建设项目环境影响报告表

(全文公示稿)

项 目 名 称: 重庆渝湘铁路水江北牵引站220千伏外部供电工程

建设单位: 国网重庆市电力公司建设分公司

编制单位: 湖北君邦环境技术有限责任公司

编制日期: 2024年2月

4201120107

打印编号: 1705655624000

编制单位和编制人员情况表

项目编号		4x34s4			
建设项目名称	,	重庆渝湘铁路水江北牵引站220千伏外部供电工程			
建设项目类别	W.	55161输变电工程			
环境影响评价文件	类型	报告表			
一、建设单位情况	兄				
单位名称 (盖章)		国网重庆市电力公司建设分公司			
统一社会信用代码	J	91500000MA5YUYUB4F			
法定代表人 (签章	1)	周茂			
主要负责人(签字	Z)	李姣专场			
直接负责的主管人	.员 (签字)	李姣 支 公 李 な な な な な な な な な な な な な な な な な な			
二、编制单位情况	兄	ASCHULINA, TRCHI			
单位名称 (盖章)		湖北君邦环境技术有限责任公司			
统一社会信用代码	J.	91420112753422574W			
三、编制人员情况	元 兄	12011201074 ¹⁵			
1. 编制主持人					
姓名	职业资标	各证书管理号 信用编号 签字			
翟海波	093542	43507550203 BH013535			
2. 主要编制人员		1			
姓名	主要	编写内容 信用编号 签字			
冯宇峰	环境现状、保护 磁环境影响评值				
翟海波	生态环境影响分护措施、生态环	析、主要生态环境保 境保护措施监督检查 単、结论 BH013535			

目 录

一、	建设项目基本情况	1
二、	建设内容	8
三、	生态环境现状、保护目标及评价标准	26
四、	生态环境影响分析	46
五、	主要生态环境保护措施	67
六、	主要环境保护措施监督检查清单	75
七、	结论	81
专题		

《重庆渝湘铁路水江北牵引站220千伏外部供电工程电磁环境影响评价专题》

附图:

附图1、本项目地理位置图

一、建设项目基本情况

建设项目	重庆渝湘铁路水江北牵引站 220 千伏外部供电工程				
项目代码	2304-500119-04-01-830880				
建设单位联系人	李**	联系方式	187***1564		
建设地点		重庆市南川区水	江镇		
地理坐标		***			
建设项目行业类别	161 输变电工程	用地面积(m²) /长度(km)	用地面积: 总占地面积 10538m², 其中永久占地 4873m², 临时占地 5665m²; 线路长度: 约 6.86km		
建设性质	☑新建(迁建) □改建 □扩建 □技术改造	建设项目 申报情形	☑首次申报项目 □不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目		
项目审批(核 准/备案)部门 (选填)	重庆市发展和改革委 员会	项目审批(核准/ 备案)文号(选填)	渝发改能源〔2023〕1165 号		
 总投资 (万元)	5125.7	环保投资(万元)	40.5		
环保投资占比 (%)	0.79	施工工期	6 个月		
是否开工建设	Z 否□是:				
专项评价设置	根据《环境影响评	价技术导则 输变电》	(HJ24-2020)"B.2.1 专题评价",		
情况	本次评价设置电磁环境	意影响专题评价。			
	规划名称:《重庆	天市"十四五"电力发展规	见划》;		
	审批机关: 重庆市	5发展和改革委员会、	重庆市能源局;		
规划情况	审批文件名称及文号:《重庆市发展和改革委员会、重庆市能源局关于印				
	发重庆市"十四五"电力发展规划(2021—2025 年)的通知》(渝发改能源				
	[2022]674 号)				
	规划环评名称:	《重庆市"十四五"电力》	发展规划(2021—2025 年)环境		
规划环境影响 评价情况	影响报告书》;				
VEDJ1月が	审批机关:重庆市	ī生态环境局;			

审查文件名称及文号:《重庆市生态环境局关于重庆市"十四五"电力发展规划(2021—2025年)环境影响报告书审查意见的函》(渝环函〔2023〕365号)

一、与重庆市"十四五"电力发展规划符合性分析

《重庆市"十四五"电力发展规划》规划期限为 2021—2025 年,根据该规划: "三、构建多元安全的电力供给体系,(二)推动输配设施协调发展: 构建安全灵活 220 千伏电网。围绕复核分布和风光等电源布局,科学有序增加220 千伏变电站布点,分层分区运行,确保各供区供电均衡、潮流分布合理、电能质量稳定可靠。科学划分供电分区,合理控制供区潮流分布和短路电流水平,提高供电分区间的支援保障能力和负荷转供能力。研究中长期全市 500千伏、220 千伏电网分区划分原则及总体构网思路,促进 220 千伏电网承上启下健康发展。鼓励地方电网与统调电网、地方电网与市外电网的互利合作,支持地方电网不断提升供电能力、提高电网安全运行水平,推动形成统调电网与地方电网良性竞争、协调发展新格局。"

渝湘铁路水江北牵引站 220 千伏外部供电工程,项目的建设符合该电力发展规 为 划。

规划及规划环 境影响评价符 合性分析

二、与《重庆市"十四五"电力发展规划(2021—2025 年)环境影响报告 书》符合性分析

根据本项目属于重庆市"十四五"220千伏电网建设项目汇总表中第56条:

《重庆市"十四五"电力发展规划(2021—2025 年)环境影响报告书》中优化调整建议主要是针对抽水蓄能、风电、光伏发电、生物质发电项目提出,对于输变电项目,规划环评中就生态环境减缓措施提出要求:输变电线路走向,有效避让敏感区,减缓生态影响。电网建设对生态环境的影响主要集中在施工期,在规划选址、选线阶段应尽量优化布局,从源头减缓生态影响。同时在开发过程中提出减缓措施,开发结束后进行生态修复和补偿。电磁环境:变电站、升压站和送电线路的建设应满足《城市电力规划规范》(GB50293-1999)、《电力设施保护条例》、《电力设施保护条例实施细则》等相关要求。采取屏蔽等措施,确保监控点处工频电场强度和磁感应强度满足《电磁环境控制限值》(GB8702-2014)的要求。

本项目在设计、选线阶段已避开了各类生态敏感区,并在环评报告中提出

了针对性的生态环境保护措施以减缓生态影响。在按照设计导线对地高度的前提下,离地 1.5m 高处及电磁环境保护目标处的工频电场强度和工频磁感应强度能够满足《电磁环境控制限值》(GB8702-2014)标准限值要求。

三、与《重庆市生态环境局关于重庆市"十四五"电力发展规划 (2021—2025 年)环境影响报告书审查意见的函》(渝环函(2023)365 号) 符合性分析

本项目与渝环函〔2023〕365号文符合性分析如下。

表 1-1 项目与渝环函〔2023〕365 号文符合性分析表

方向	相关要求	项目情况	是否 符合
严格保护 生态空 间,优化 规划空间 布局	优化项目布局选址,避让生态保护红线、自然保护区、风景名胜区、森林公园等生态敏感区;涉及一般生态空间的项目应严格控制占地范围,采取相应的环境保护和生态修复措施,保证生态系统结构功能不受破坏	项目选线不涉及生态保护红线、自然保护区等生态敏感区; 项目实施过程将通过优选塔型、严格控制施工作业面等相关措施,尽量减少占地,施工结束后采取表土回覆、植被恢复等措施保证生态系统结构功能不受破坏	符合
严守环境 质量底 线,加强 环境污染 防治	合理确定升压站选址、输变电线 路路径和导线对地高度,确保站 界和线路下方电场强度和磁感应 强度符合电磁环境相关标准	经预测,在按照设计导线对地高度的前提下,线路下方 1.5m 处及电磁环境保护目标处的工频电场强度和工频磁感应强度能够满足《电磁环境控制限值》(GB8702-2014)标准限值要求	符合
完善生态 影响,落 措施。 实生态补 偿机制	优化取、弃土场设置,弃土及时 清运严禁边坡倾倒,弃土、弃渣 应运至指定地点集中堆放;严格 控制占地面积和施工范围,合理 规划临时施工设施布置,减少生 态环境破坏和扰动范围;强化施 工管理,合理安排施工时序;严 格落实边坡防护等水土保持措 施,及时开展临时用地表土回覆、 植被恢复并确保恢复效果良好	本项目施工期输电线路沿线不设取弃土场,塔基挖方拟堆放回填在塔基周围低洼处,施工期将严格控制占地面积和施工的围,合理规划临时施工和产量,减少生态环境对等。 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	符合
规范环境 管理	进一步与自然保护地、国土空间 "三区三线"划定成果衔接,严格 落实自然保护地、国土空间用途 管制等要求;加强规划环评与项 目环评的联动,应结合规划环评 提出的指导意见和管控要求做好 项目环境影响评价工作	本项目不涉及自然保护地、生 态保护红线等,项目符合规划 环评相关要求	符合

由上,项目的建设符合渝环函〔2023〕365 号文的要求。

其他符合性分 1.与"三线一单"符合性分析

(1) 与生态保护红线的符合性

本项目位于重庆市南川区水江镇,不涉及生态保护红线,详见附图11。

(2) 与环境质量底线的符合性

环境质量底线是国家和地方设置的大气、水和土壤环境质量目标, 也是改善环境质量的基准线。

本项目为输变电工程,为非工业、污染类项目,运营期无工业废水、废气产生排放。根据预测和类比分析结果,本项目营运期产生的声环境、电磁环境影响均能满足相应的标准限值要求;对临时占地采用植被恢复等生态恢复补偿措施,采取环保措施后将对项目周边环境影响降至较低水平,不会触及沿线环境质量底线,项目建设满足环境质量底线要求。

(3) 与资源利用上线的符合性

资源利用上线是从促进资源能源节约、保障资源高效利用、确保必不可少的环境容量角度,不应突破资源利用最高限值。本项目为输变电工程,本项目新增占地较少,从总体上看,本项目对土地资源利用和保护影响较小,不会突破资源利用上线。

(4) 与生态环境准入清单的符合性

根据重庆市"三线一单"智检服务查询结果(查询结果见附件 6),项目所在地位于南川区重点管控单元-大溪河鱼泉河内,管控单元编码: ZH50011920005。项目与南川区重点管控单元-大溪河鱼泉河管控要求符合性分析见下表 1-2。

表 1-2 南川区重点管控单元-大溪河鱼泉河管控要求符合性分析

环境管 控单元 名称及 编码	执行的 市级总 体管控 要求	管控类别	管控要求	本项目符合性分析
南川区 重点管 控单元- 大溪河 鱼泉河 (ZH50 0119200 05)	重单近 (东管向区域体方) 区城体方 川区城体	空间局東	工业用地与居住用地之间,根据实际情况设置缓冲带。对不符合产业准入政策、环境污染重的落后产能实施强制淘汰,实现工矿企业全面达标排放。页岩气开采规划取水应按规定开展水资源论证。涉重及涉危险化学品的设施禁止选址于溶洞区及地下暗河上方	本项目为输变电工程,不属于工业项目,项目评价范围内不涉及居住用地,符合管控要求

	污物放控	对人口集中居住区的易扬尘场所要采取规范化隔离或覆盖等防尘措施,有效控制粉尘污染。加强境治气开采中的水环境保护和环治营监测工作;强化地下水污染防险对区域地下水水质进行跟踪监测。水江组团热电联产项目实施后,制度,现有氧化铝项目实施后,制度,是一个方,有人是一个方,有人是一个方,有人是一个方,是一个方,是一个方,是一个一个方,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	项目施工期将做好 防尘措施,不涉及页 岩开采,不涉及锅炉 使用,不涉及金属排 放,符合管控要求
	环境 风险 防控	园区应制定环境风险应急预案,按要求开展突发环境事件风险评估。成立应急组织机构,定期开展应急演练,提高区域环境风险防范能力。建设环境应急物资储备库,企业环境应急装备和储备物资应纳入储备体系。加强页岩气开采中的地下水环境风险防控。各项目详设阶段除要求严格执行相应防渗标准外,装置的布局要根据水文地质条件优化调整,降低对地下水的环境风险	本项目为输变电项目,非工业项目,建设单位制定有突发环境事件风险应急预案,符合管控要求。
	资	新建和改造工业项目的水资源消耗水平应达到《重庆市工业项目环境准入规定》中的准入值及行业平均值;新建和改造的能耗水平应达到《重庆市工业项目环境准入规定》中的准入值及行业平均值	本项目为输变电项目,不属于工业项目,符合管控要求

综上,本项目符合重庆市"三线一单"及南川区重点管控单元-大溪河鱼泉河的相应管控要求。

2.项目与相关生态环境保护法律法规政策、生态环境保护规划的符合性

2.1 项目与相关生态环境保护法律法规政策的符合性

本项目评价范围内不涉及各类自然保护区、风景名胜区、森林公园等需要特别保护的生态敏感区域,且未占用饮用水源保护区。

2.2 项目与相关生态环境保护规划政策的符合性分析

(1) 与重庆市生态环境保护"十四五"规划(2021—2025年)符合性分析

重庆市生态环境保护"十四五"规划中提出落实生态环境准入规定,坚决管 控高耗能、高排放项目,除在安全生产或者产业布局等方面有特殊要求外,禁 止在工业园区外新建工业项目。禁止在工业园区外扩建钢铁、焦化、建材、有色等高污染项目,禁止新建、扩建不符合国家石化、现代煤化工等产业布局规划的项目。加强电磁辐射环境监管。强化输变电设施、雷达、广播电视台站等电磁辐射建设项目的事中事后监管,督促建设单位落实环境保护相关要求。

本项目为输变电工程,属于基础设施类项目,不属于重庆市生态环境保护"十四五"规划中禁止类和管控类项目,项目按照环评法等相关规定,严格履行环评及验收相关手续,严格落实环境保护相关要求,因此,本项目建设符合重庆市生态环境保护"十四五"规划(2021—2025年)。

(2)与《重庆市生态环境局关于印发重庆市辐射污染防治"十四五"规划 (2021-2025 年)的通知》符合性分析

根据《重庆市生态环境局关于印发重庆市辐射污染防治"十四五"规划(2021-2025年)的通知》(渝环[2022]27号),"十四五"期间重庆电磁环境的主要目标和要求是:"电磁辐射环境监管得到加强:强化电磁类建设项目事中事后监管,进一步提升电磁环境监测能力,确保电磁辐射建设项目安全有序发展"。

本项目为输变电工程,属于电磁类项目,项目按照环评法等相关规定,严格履行环评及验收相关手续,严格落实环境保护相关要求,项目运行期按照排污监测监督管理办法等相关要求,建立了电磁环境等指标的监测要求,确保项目电磁环境达标。因此,项目建设符合重庆市生态环境局关于印发重庆市辐射污染防治"十四五"规划。

(3) 与重庆市南川区生态环境保护"十四五"规划符合性分析

根据《重庆市南川区人民政府关于印发重庆市南川区生态环境保护"十四五"规划的通知》(南川府发(2022)2号),重庆市南川区生态环境保护"十四五"规划中提出严控放射性和电磁辐射污染。持续完善核与辐射安全监管体制机制,推进核与辐射安全监管体系和监管能力现代化,落实辐射安全监管跨部门协作机制。全面提升核与辐射安全水平,加强射线装置监控和放射源跟踪管理,严格执行辐射工作安全许可制度,规范放射性物品运输和废旧放射源安全管理,督促放射源使用单位按规范处置废旧放射源。优化电磁辐射设施及设备布局,完善电磁辐射区域控制,强化基站、变电站、输电线路等电磁辐射源监管,推进电磁环境质量现状调查和监测。加快建立辐射事故预警系统,提高

应对各种突发性辐射事故的能力。积极推进辐射监测能力达标建设,按照市级
要求完善辐射环境监测网络,及时修订辐射环境应急预案,提升核与辐射事故
应急能力。
本项目按照环评法等相关规定,严格履行环评及验收相关手续,项目运行
期按照相关要求建立电磁环境等指标的监测计划,建立了电磁环境等指标的监
测要求,确保项目电磁环境达标。因此,项目建设符合重庆市南川区生态环境
保护"十四五"规划。

二、建设内容

本工程位于重庆市南川区水江镇,地理位置详见附图 1。

(1) 宏墙 220kV 变电站间隔扩建工程

宏墙 220kV 变电站站址位于重庆南川工业园区水江组团,本期工程位于 220kV 宏墙变电站西北侧。

地理 位置

(2) 新建宏墙变电站—水江北牵引站 2 回 220kV 线路工程

线路起于宏墙 220kV 变电站止于水江北牵引站,全线位于南川区水江镇。

(3) 110kV 大宏线迁改工程

线路起于原 110kV 大宏线 81#塔,止于原 110kV 大宏线 85#塔;全线位于南川区水江镇。

1.项目由来

为满足渝湘高速铁路重庆至黔江段水江北牵引站用电需求,国网重庆市电力公司建设分公司拟开展"重庆渝湘铁路水江北牵引站 220 千伏外部供电工程"。

根据设计资料,重庆渝湘铁路水江北牵引站 220 千伏外部供电工程拟建 220kV 架 空线路需跨越已建 110kV 大宏线,因跨越处已建 110kV 大宏线杆塔高度较高,不满足安全跨越条件,因此本工程需对 110kV 大宏线进行迁改,110kV 大宏线迁改工程已纳入重庆渝湘铁路水江北牵引站 220 千伏外部供电工程规划选址意见书。

2.项目组成

根据项目核准批复及选址意见书,工程分为以下三个建设内容。

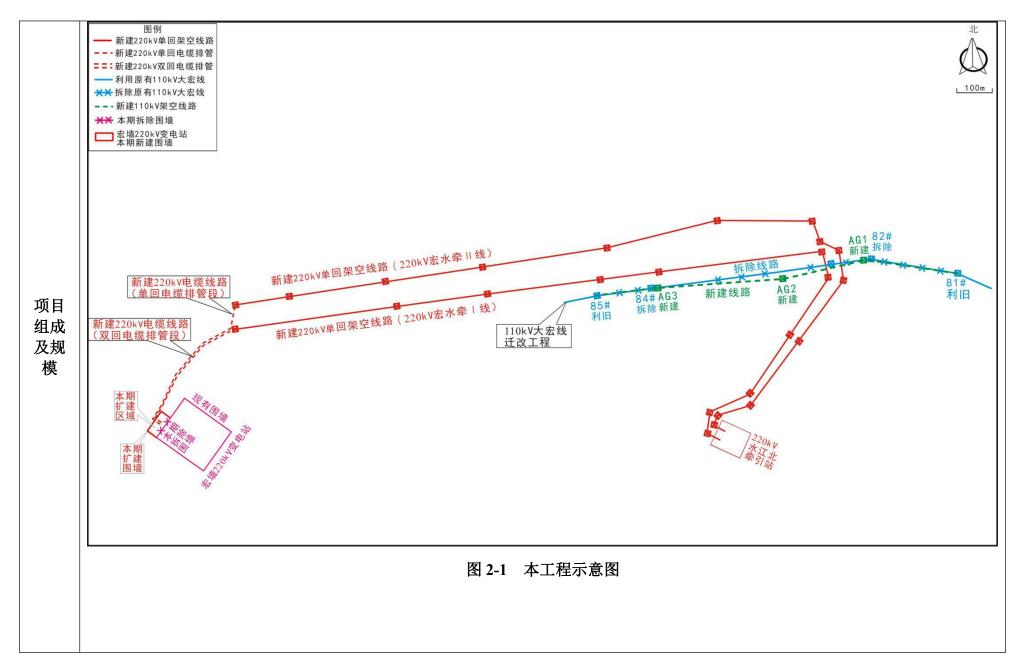
(1) 宏墙 220kV 变电站间隔扩建工程

在宏墙 220kV 变电站西北侧厂界外新征用地内扩建 2 个 220kV 出线间隔至水江 北牵引站,本期在征地范围内扩建两个电缆间隔基础,安装相应的配电装置,并完善 相应的一、二次设备和通信设备。

(2) 新建宏墙变电站—水江北牵引站 2 回 220kV 线路工程

线路起于宏墙 220kV 变电站,止于水江北牵引站,线路简称 220kV 宏水牵 I、II 线。工程涉及新建架空线路折单长度 4.9km,其中 220kV 宏水牵 I 线 2.4km,220kV 宏水牵 II 线 2.5km;涉及新建电缆线路折单长度 0.95km,其中 220kV 宏水牵 I 线 0.44km,220kV 宏水牵 II 线 0.51km。

(3) 110kV 大宏线迁改工程


线路起于原 110kV 大宏线 81#塔, 止于原 110kV 大宏线 85#塔。拆除原 110kV 大

项组及 模

宏线 81#-85#段线路约 1km, 拆除 3 基杆塔(原 82#、原 83#、原 84#), 在原 110kV 大宏线 81#-85#段线路南侧新建电力廊道(已取得规划选址意见书), 新建 110kV 单 回架空线路约 1.01km, 新建 3 基杆塔。具体工程建设内容见表 2-1。

表 2-1 工程总体概况一览表

	 1	H	表 2-1 上程尽体概况一览表			
	工利		建设内容			
		220kV 变电 隔扩建工程	在宏墙 220kV 变电站西北侧厂界外新征用地内扩建 2 个 220kV 出线 间隔至水江北牵引站			
	新建2	220kV 宏水	①新建 220kV 宏水牵 I 线全长约 2.84km, 其中单回架空 2.4km, 单回电缆 0.44km;			
主体工程	牵I、II线工程		②新建 220kV 宏水牵 II 线全长约 3.01km, 其中单回架空 2.5km, 单回电缆 0.51km。			
		/ 大宏线迁 改工程	拆除原 110kV 大宏线 81#-85#段线路约 1km, 拆除 3 基杆塔新建 110kV 单回架空线路约 1.01km(原 81#塔至 85#塔),不调整原有线路其他部分导线弧垂,新建 3 基杆塔。			
	辅	i助工程	利用站内已建辅助用房,本期不新建			
	环保	固体废物	运行期不新增站内值守人员,值守人员产生的生活垃圾利用站内已 有收集装置收集后定期交由环卫部门清运			
宏墙 220k	工程	污水处理	运行期不新增站内值守人员,值守人员生活污水经站内已建一体化 生活污水处理设施处理后排入园区污水管网			
V变		生活区	就近租用项目周边民房,不另设施工营地			
电站间隔	临时 工程	材料场	拟在宏墙220kV 变电站征地红线内设置材料站,用于堆放施工设备、钢筋材料等			
扩建工程	拆除 工程	拆除原西北侧围墙约 63m,并新建西北侧围墙约 115m				
	占地面积	本期 220kV	建设单位已在宏墙 220kV 变电站西北侧厂界外一次性新征 9124m ² 用地,其中本期 220kV 间隔扩建工程占地面积约 1638m ² ,后期 110kV 扩建工程占地面积约 7486m ² (不纳入本期评价内容),详见附图 13			
新建 220k	辅助 工程	电缆通道	①新建双回电缆排管约 0.44km, 按 1.0×1.45m(宽×高), 2 回设计, 其中 220kV 宏水牵 I 线利用 1 回, 220kV 宏水牵 II 线利用 1 回, 电缆通道 电缆最低埋深约 1.5m; ②新建单回电缆排管约 0.07km, 按 0.7×1.45m(宽×高), 1 回设计 (220kV 宏水牵 II 线利用), 电缆最低埋深约 1.5m;			
V 宏 水牵	环保 工程	生态恢复	线路沿线设置护坡、高低塔、植被恢复措施等			
I、II 线		牵张场	预设2个牵张场			
=-X	临时	生活区	就近租用项目周边民房,不另设施工营地			
	工程	施工便道	原则上不开辟施工机械便道。利用现有道路将施工材料运输至施工车辆可到达处后,采取人背马驮方式,将施工材料运输至塔基处			
	辅助 工程	无				
110kV 大宏	环保 工程	生态恢复	线路沿线设置护坡、高低塔、植被恢复措施等			
线迁	uk nik	牵张场	利用 220kV 宏水牵 I、II 线牵张场,不另设牵张场			
改工	临时工程	生活区	同新建 220kV 宏水牵 I、II 线工程			
程	工程	施工便道	同新建 220kV 宏水牵 I、II 线工程			
	拆除 工程	拆除原 110	kV 大宏线 81#-85#段线路约 1km, 拆除 3 基杆塔(原 82#、原 83#、 拆除的杆塔、废导线、废金具等交由电力公司物资部门处理			

第 10 页

3.建设规模及主要经济技术指标

3.1 宏墙 220kV 变电站间隔扩建工程

3.1.1宏墙220kV 变电站现有规模

宏墙220kV 变电站为全户外变电站,现有主变容量2×180MVA,220kV 已出线6回,110kV 已出线8回。

3.1.2站内现有环保设施

- (1)站内现有地埋式污水处理装置1座,值守人员及检修人员产生的少量生活污水经地埋式污水处理装置处理后进入园区污水管网。
- (2) 变电站内已设有垃圾桶等生活垃圾收集设施,生活垃圾定期由环卫部门进行 清运。
- (3)根据前期竣工验收资料,站内现有1座有效容积为60m³的事故油池,事故油池容积能够满足《火力发电厂与变电所设计防火规范》(GB 50229-2019)中"总事故贮油池的容量应按其接入的油量最大的一台设备确定"的要求。

根据现场调查,站内以上环保设施均运行正常。

3.1.3前期工程环保手续履行情况

宏墙 220kV 变电站属于"南川 220kV 宏墙输变电工程"之一,"南川 220kV 宏墙输变电工程"已于 2012 年 5 月 28 日取得了环评批复(渝(辐)环准(2012)61号),并于 2017 年 9 月 25 日取得了验收批复(渝(辐)环验(2017)047号)。

根据现场调查,变电站内各项环保设施均运行正常,变电站竣工验收以来,未出现过污染事件,无历史环境遗留问题,无环保相关投诉。

3.1.4 本期扩建规模

建设单位已在宏墙 220kV 变电站西北侧厂界外一次性新征 9124m² 用地,计划分两期使用,其中本期 220kV 间隔扩建工程占地面积约 1638m²,后期 110kV 扩建工程占地面积约 7486m²(不纳入本期评价内容),本期在新征用地内扩建 2 个 220kV 出线间隔至水江北牵引站,详见附图 13。

3.1.4 依托工程及可行性分析

宏墙 220kV 变电站间隔扩建工程与前期工程依托关系见表 2-2。

表2-2 宏墙220kV 变电站本期扩建与前期工程依托关系一览表

依	托工程	内容	
	进站道路	利用现有进站道路,本期无需扩建	
	供水管线	利用站内已建供水系统,本期无需增设生活给水管网	
站内设	生活污水处 理装置	依托原有生活污水处理装置,不新增运行人员,不增加生活污水量	
施	雨水排水	利用站内外已建雨水排水系统,不新建	
	生活垃圾	利用站内已设垃圾箱	
	事故油池	站内现有1座有效容积为60m³的事故油池,本期扩建不涉及含油设备,本期无需扩建事故油池	

本期间隔扩建工程不改变站内现有布置,不新增工作人员,不新增用水及排水,不新建事故油池,不改变变电站已设计的环保设施运行及利用方式,变电站投运至今站内各环保设施运行稳定,无环保遗留问题。因此,本期扩建依托变电站内现有设施合理可行。

3.2 新建 220kV 宏水牵 I、II 线

3.2.1 主要经济技术指标

本项目新建 220kV 宏水牵 I、II 线起于宏墙 220kV 变电站,止于 220kV 水江北牵 引站,两条线路基本并线走线,线路沿线地形地貌、气象条件等方面相同,本项目新建 220kV 宏水牵 I、II 线主要经济技术指标见表 2-3。

表 2-3 新建 220kV 宏水牵 I、II 线主要经济技术指标

线路 名称	架设 方式	主要经济技术指标		
		线路电压等级	220kV	
		回路数	单回	
		线路路径长度	约 2.4km	
		设计导线对地高度	最低约 19m	
		杆塔	新建单回铁塔 11 基	
		相序排列	三角排列、垂直排列(水江北牵引站进线侧)	
	架空	导线型号	采用 JL3/G1A-400/35 型单导线	
	线路	地线	地线采用 1 根 48 芯 OPGW-120 光缆,1 根 JLB20A-120	
			型铝包钢绞线	
220kV		主要交叉跨越	跨越 110kV 南中线 1 次、跨越 110kV 大宏线迁改线路 1	
宏水			次,跨越 10kV 线路 5 次、跨一般道路 3 次、跨建筑 1 次	
牵I线		基础形式	人工挖(钻)孔桩基础	
		林木砍伐量	砍伐灌木 200m²,预计砍伐乔木约 10 棵,主要树种为松	
			树、杉树等	
		线路电压等级	220kV	
		回路数	单回	
	电缆	线路路径长度	约 0.44km	
	线路	电缆埋深	最低埋深约 1.5m	
	-7111		新建双回电缆排管约 0.44km, 按 1.0×1.45m (宽×高), 2	
		电缆通道形式	回设计,其中 220kV 宏水牵 I 线利用 1 回,220kV 宏水	
			牵Ⅱ线利用1回	

		电缆型号	ZB-YJLW03-Z127/220kV 1×800mm ² 交联聚乙烯绝缘皱纹铝护套阻燃电力电缆
		金属外套接地方式	本项目电缆接地采用两个接地单元,单元内电缆采用一端 直接接地,一端保护接地
		排水	利用电缆线路沿线地形自然排水
		通风	6个工作井,井口设置两处人孔井用于进出及通风换气(自然通风)
		施工方式	线路在穿越水江大道段采用顶管开挖,线路其余段采用明 开挖
		主要交叉跨越	电缆线路穿越水江大道 1 次,穿越 110kV 南中线 1 次,穿越 10kV 线路 5 次
		线路电压等级	220kV
		回路数	单回
		线路路径长度	约 2.5km
		设计导线对地高度	最低约 14m
		杆塔	新建单回铁塔 14 基
		相序排列	三角排列、垂直排列(水江北牵引站进线侧)
	मेग के	导线型号	采用 JL3/G1A-400/35 型单导线
	架空 线路	地线	地线采用 1 根 48 芯 OPGW-120 光缆, 1 根 JLB20A-120 型铝包钢绞线
		主要交叉跨越	穿越 500kV 张竹二线 1 次,跨越 110kV 南中线 1 次,超 越 110kV 大宏线迁改线路 1 次,跨越 10kV 线路 8 次,最 一般道路 3 次,跨建筑 1 次
		基础形式	人工挖(钻)孔桩基础
220kV		林木砍伐量	砍伐灌木 250m ² , 预计砍伐乔木约 15 棵, 主要树种为树 树、杉树等
宏水		线路电压等级	220kV
牵 II		回路数	单回
线		线路路径长度	约 0.51km
		电缆埋深	最低埋深约 1.5m
	1 /1/4	电缆通道形式	①利用 220kV 宏水牵 I 线新建双回电缆排管约 0.44km, 最低埋深约 1.5m; ②新建单回电缆排管约 70m,按 0.7×1.45m(宽×高), 回设计,最低埋深约 1.5m;
	电缆 线路	电缆型号	ZB-YJLW03-Z127/220kV 1×800mm ² 交联聚乙烯绝缘皱约铝护套阻燃电力电缆
		金属外套接地方式	本项目电缆接地采用两个接地单元,单元内电缆采用一直接接地,一端保护接地
		排水	利用电缆线路沿线地形进行自然排水
		通风	利用 220kV 宏水牵 I 线新建电缆排管段工作井
		施工方式	新建单回电缆排管段采用明开挖
		主要交叉跨越	电缆线路穿越水江大道 1 次,穿越 500kV 张竹二线 1 次 穿越 110kV 南中线 1 次,跨越 10kV 线路 5 次

3.2.2 线路主要交叉跨越情况

本项目新建220kV宏水牵I、II线架空线路主要交叉跨越(穿越)情况详见下表2-4。

表 2-4 新建架空线路主要交叉跨越 (穿越) 一览表

交叉跨 越类型	跨越(穿 越)次数	跨越要求	依据	备注
公路	6次	导线与公路的路面 最小垂直距离 8.0m	// 1101-X/ 7501-X/	架空线路跨一般道路 6 次
电力线 路	22 次	至被跨越物最小垂 直距离 4.0m	《110kV~750kV 架空输电线路 设计规范》(GB 50545-2010)》	穿越 500kV 张竹二线 1 次, 跨越 110kV 南中线 2 次, 跨越 110kV 大宏线 2 次, 跨 10kV 线路 13 次
建筑物	2 次	导线与建筑物之间 的最小垂直距离约 6.0m	30343-2010) //	跨重庆市博勇建筑工程有限公司 项目部 2 次

3.2.3 杆塔及电缆构筑物形式

根据设计资料,本项目新建 220kV 宏水牵 I、II 线共新建杆塔 25 基,其中 220kV 宏水牵 I 线新建 11 基,220kV 宏水牵 II 线新建 14 基,杆塔一览图见附图 4。

表 2-5 新建 220kV 宏水牵 I 线新建杆塔基本情况一览表

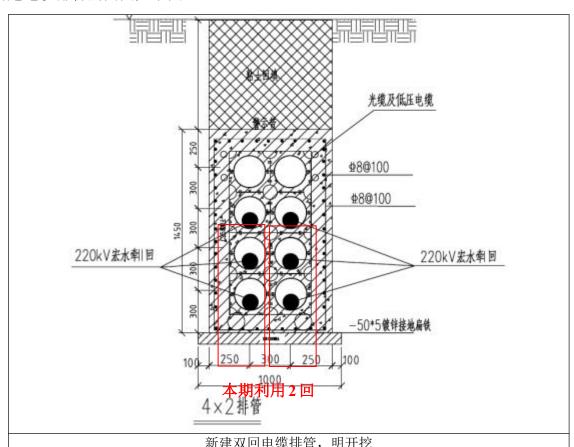

杆塔号	塔型	水平档距	垂直档距	呼高(m)	使用数量(基)			
G1	22N-DJ	229	102	21	1			
G2	220-EB21D-JC1	357	336	27	1			
G3	220-EB21D-ZMC2	285	446	30	1			
G4	220-EB21D-ZMC2	240	232	33	1			
G5	220-EB21D-JC1	311	232	24	1			
G6	22N-DJ	266	373	48	1			
G7	22N-J3	135	210	39	1			
G8	220-EB21D-ZMC2	195	299	33	1			
G9	22GNC-J3	154	56	24	1			
G10	22GNC-J3	84	70	24	1			
G11	22GNC-DJ	50	159	18	1			
	总计							

表 2-6 新建 220kV 宏水牵 II 线新建杆塔基本情况一览表

杆塔号	塔型	水平档距	垂直档距	呼高(m)	使用数量(基)			
N1	22N-DJ	76	46	21	1			
N2	220-EB21D-JC1	211	172	30	1			
N3	220-EB21D-ZMC2	272	276	30	1			
N4	220-EB21D-ZMC2	311	272	33	1			
N5	220-EB21D-JC1	332	454	24	1			
N6	220-EB21D-JC1	291	389	27	1			
N7	22N-DJ	165	40	15	1			
N8	22N-J3	61	137	15	1			
N9	22N-J3	73	303	42	1			
N10	22N-J3	146	235	39	1			
N11	220-EB21D-ZMC2	214	280	33	1			
N12	22GNC-J3	161	76	27	1			
N13	22GNC-J3	63	134	24	1			
N14	22GNC-DJ	31	111	18	1			
	总计							

根据设计资料,本项目新建电缆线路全线采用电缆排管,新建电缆排管长约 0.51km,其中新建双回电缆排管约 0.44km (220kV 宏水牵 I 线利用 1 回,220kV 宏水

牵 II 线利用 1 回),新建单回电缆排管约 $0.07 \mathrm{km}$ ($220 \mathrm{kV}$ 宏水牵 II 线利用 1 回)。新建电缆排管剖面图见下图 2-2。

新建双回电缆排管,明开挖 低压电缆 本期利用2里 大线保护管 00% 新建双回电缆排管,顶管开挖(穿越水江大道段)

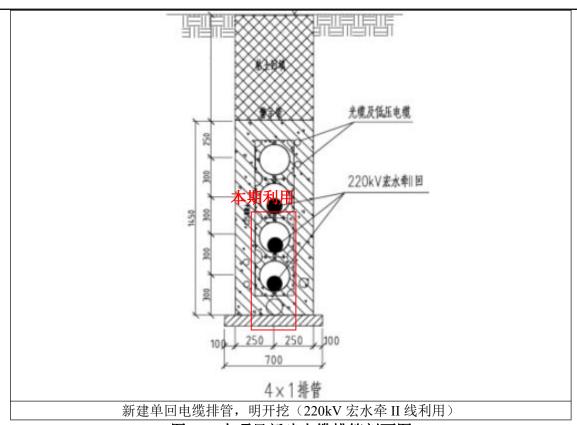


图 2-2 本项目新建电缆排管剖面图

3.2.4 基础

根据设计资料,本项目新建 220kV 宏水牵 I、II 线新建杆塔采用人工挖孔桩基础;新建电缆线路在穿越水江大道段采用顶管开挖,其余段采用明开挖方式。

3.2.5 并行线路

(1) 架空线路段

根据设计资料及现场调查,本项目新建 220kV 宏水牵 I、II 线全线基本并行走线,线路沿线与已建成的 500kV 张马一二线、110kV 大宏线以及 110kV 南中线平行走线约 1.6km,新建 220kV 宏水牵 I、II 线边导线两侧 100m 范围内并行线路并行间距详见下表。

表 2-7 本项目新建 220kV 宏水牵 I 线沿线并行线路并行情况一览表

线路名称		拟建 220kV	己建 500kV	己建 500kV	己建 110kV	己建 110kV	备注
		宏水牵Ⅱ线	张竹一线	张竹二线	南中线	大宏线	1117工
拟建	水平	约 14m~100	超出 100m	约 36m~100	约 16m~24	约 29m~40	线路中
220kV	间距	m	旭山 100III	m	m	m	心距离
宏水	垂直	最小垂直高	最小垂直高	最小垂直高	最小垂直	最小垂直高	/
牵I线	间距	差约 1m	差约 3m	差约 3m	高差约 6m	差约 6m	/

表 2-8 本项目新建 220kV 宏水牵 II 线沿线并行线路并行情况一览表

线路名称		拟建 220kV 宏水牵 I 线	已建 500kV 张竹一线	已建 500kV 张竹二线	已建 110kV 南中线	己建 110k V 大宏线	备注
拟建 220kV	水平 间距	约 14m~100 m	约 53m~95m	约 32m~72 m	约 85m~100 m	超出 100m	线路中 心距离
宏水 牵 II 线	垂直间距	最小垂直高 差约 1m	最小垂直高 差约 2m	最小垂直高 差约 2m	最小垂直高 差约 5m	最小垂直 高差约 5m	/

(2) 电缆线路段

本项目新建电缆线路沿线无 110kV 及以上并行线路。

3.3 110kV 大宏线迁改工程

3.3.1 110kV 大宏线现有规模

110kV 大宏线起于宏墙220kV 变电站, 止于大梁子风电场, 线路路径全长21.26km。 采用架空和电缆混合架设方式, 其中架空线路约21.1km, 电缆线路约016km(宏墙220kV 变电站出线侧)。

根据建设单位提供资料,110kV 大宏线属于"武隆大梁子风电场110kV 送出工程"建设内容。该工程于2016年11月18日取得了环评批复(渝武环准〔2016〕051号),2019年8月5日,完成了竣工环境保护自主验收工作(验收意见详见附件4)。线路竣工验收以来,未出现过污染事件,无历史环境遗留问题,无环保相关投诉。

3.3.2 要经济技术指标

本项目新建架空线路经济技术指标见表 2-9。

表 2-9 主要经济技术指标一览表

线路	架设								
名称	方式		主要经济技术指标						
	7414	线路起止点	线路起于原 110kV 大宏线 81#塔, 止于原 110kV 大宏线 85#塔						
		电压等级	110kV						
		回路数	单回						
		线路路径长	新建原 110kV 大宏线 81#塔至 85#塔段线路约 1.01km, 不调整						
		度	原有线路其他部分导线弧垂						
1101-37		设计导线对	最低约 11m						
110kV 大宏		地高度	取以约 11111						
线迁	架空	杆塔	新建3基双回塔,利旧2基(原110kV大宏线81#塔、85#塔)						
改工	线路	相序排列	垂直排列(双回塔单边挂线)						
程		导线型号	采用 JL3/G1A-300/25 型单导线						
7王		地线	地线采用 2 根 36 芯 OPGW-36B1-90 光缆						
		主要交叉跨	穿越拟建 220kV 宏水牵 I 线 1 次,穿越拟建 220kV 宏水牵 II						
		越	线1次,跨一般道路1次						
		基础形式	人工挖(钻)孔桩基础						
		林木砍伐量	砍伐灌木 50m², 预计砍伐乔木约 5 棵, 主要树种为松树、杉树等						

3.3.3 线路主要交叉跨越情况

本项目110kV大宏线迁改工程主要交叉跨越情况详见下表2-10。

表 2-10 110kV 大宏线迁改工程主要交叉跨越一览表

交叉跨越 类型	跨越(穿 越)次数	跨越要求	依据	备注
一般公路	1 次	导线与公路的路面最 小垂直距离 7.0m	《110kV~750kV 架 空输电线路设计规	跨一般公路1次
电力线路	2 次	至被跨越物最小垂直 距离 4.0m	空制电线路及目然 范》(GB 50545-2010)》	穿越拟建 220kV 宏水牵 I 线 1 次,穿越拟建 220kV 宏水牵 II 线 1 次

3.3.4 杆塔

根据设计资料,本项目新建110kV架空线路工程新建双回杆塔3基,详见下表2-11,杆塔一览图见附图4。

表 2-11 新建 110kV 架空线路工程新建杆塔基本情况一览表

序号	塔型	水平档距	垂直档距	呼高范围(m)	使用数量(基)		
1	110DB21S-SJ1	350	450	24	3		
	总计						

3.3.4 基础

根据设计资料,本项目新建杆塔采用人工挖孔桩基础。

3.3.5 并行线路

根据设计资料及现场调查,本项目新建 110kV 架空线路与拟建 220kV 宏水牵 I 线并行走线约 0.65km,并行间距约 38m~87m(线路中心间距);与已建 110kV 南中线基本平行走线,并行间距约 19m~80m(线路中心间距)。

3.4 工程占地

根据《重庆渝湘铁路水江北牵引站 220 千伏外部供电工程水土保持方案报告表》,本项目总占地面积 10538m², 其中永久占地 4873m², 临时占地 5665m², 永久占地为宏墙 220kV 变电站间隔扩建工程本期征地(本期利用)、输电线路塔基占地以及电缆排管竖井占地等,临时占地为电缆排管施工临时占地、塔基处施工临时用地、牵张场占地等。详见下表 2-12。

表2-12 本项目占地面积一览表

		W2 12	1 7	ныл	3 pm 1/1 2					
			占地类型及面积(m²)							
	工程名称		耕地	1	木 地	草地	交通运输 用地	其他土 地	合计	
				乔木 林地	灌木林地	其他草地	公路用地	裸土地	пИ	
変电 工程	变电站间隔扩建工 程(本期利用)	永久占地	0	0	638	0	0	1000	1638	
上作	变电站施工场地	临时占地	0	0	0	0	0	0	0	
	塔基及其施工区	永久占地	300	550	1100	435	0	350	2735	
44.1.	冶至仪共加工区	临时占地	200	350	1200	565	300	350	2965	
输电 线路	电缆及其施工区	永久占地	0	0	250	0	50	200	500	
工程	电规及共爬工区	临时占地	0	0	500	100	200	700	1500	
	牵张场	临时占地	0	0	0	0	1200	0	1200	
	小计		500	900	3688	1100	1750	2600	10538	

备注: 电缆永久占地为电缆竖井占地。

3.5土石方量

根据《重庆渝湘铁路水江北牵引站220千伏外部供电工程水土保持方案报告表》, 本项目工程挖方量共计约9000m³,填方约9000m³,工程沿线不设弃渣场,详见下表2-13。

序号 工程 挖方 填方 调入方 调出方 宏墙 220kV 变电 间隔扩建基础开挖等 $3000m^{3}$ $3000m^{3}$ 1 0 0 站间隔扩建工程 塔基基础、电缆排管、 新建 220kV 宏水 2 $5800m^{3}$ $5800m^{3}$ 0 0 牵I、II线 电缆竖井开挖等 110kV 大宏线迁 3 塔基基础开挖等 $200m^{3}$ $200m^{3}$ 0 0 改工程 合计 $9000m^{3}$ 9000m³ 0 0

表 2-13 工程施工期土石方平衡一览表

1.宏墙220kV 变电站间隔扩建工程

根据设计资料,宏墙220kV 变电站220kV 进出线间隔共6个,已出线6回(至南川站2回、至中涪电厂2回、至万盛变2回),已无出线间隔,本期在宏墙220kV 变电站西北侧厂界外新征用地,扩建2个220kV 出线间隔至水江北牵引站。

建设单位在宏墙220kV 变电站西北侧厂界外已一次性新征9124m²用地,计划分两期使用,其中本期220kV 间隔扩建工程占地面积约1638m²,后期110kV 扩建工程占地面积约7486m²(不纳入本期评价内容),宏墙220kV 变电站间隔扩建工程示意图见下图2-3,变电站间隔布置情况详见图2-5。

宏墙 220kV 变电站间隔扩建工程示意图 图 2-3

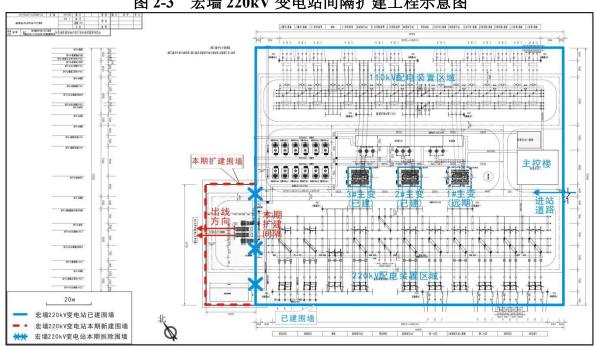


图2-4 宏墙220kV 变电站平面布置图

	1	2	3	4	5	6	7	8	大声	
西北侧	水江I	水江 II	南川I	南川 II	中涪电 厂 I	中涪电 厂 II	万盛 I	万盛 II	新南 例	
	宏墙 220kV 变电站									

图 2-5 宏墙 220kV 变电站 220kV 间隔布置情况图

2.对侧间隔利用情况

本项目拟建220kV 宏水牵 I、II 线起于宏墙220kV 变电站,止于水江北牵引站,目前,水江北牵引站正处于设计阶段,水江北牵引站拟向西北架空进线,设计进线间隔2个,进线间隔新建工程属于水江北牵引站工程建设内容之一,**不纳入本评价内容**。

表 2-14 水江北牵引站进线间隔排列

西南侧	编号	1	2	东北侧
四角侧	间隔名称	宏墙 I	宏墙 II	不心则

3.新建 220kV 宏水牵 I、II 线

(1) 新建220kV 宏水牵 I 线线路路径

线路起于宏墙220kV变电站,止于水江北牵引站,线路从宏墙变向西北方向采用电缆出线后向东北方向走线至水江大道,穿越水江大道后继续向东北方向走线,穿越110kV南中线,到达本期新建电缆终端塔G1,电缆上塔转为架空方式走线,架空线路先在500kV张竹二线和110kV南中线通道之间向东北方向走线约1.7km后转向西南方向,跨越110kV南中线和110kV大宏线后继续向西南方向走线并接入水江北牵引变,线路路径示意图见附图2。

(2) 新建220kV 宏水牵 II 线线路路径

线路起于宏墙220kV变电站,止于水江北牵引站,线路从宏墙变向西北方向采用电缆出线后向东北方向走线至水江大道,穿越水江大道后继续向东北方向走线,穿越110kV南中线和500kV张竹二线,到达本期新建电缆终端塔N1,电缆上塔转为架空方式走线,架空线路先在500kV张竹一线和500kV张竹二线通道之间向东北方向走线约1.8km后转向东南方向走线,跨越500kV张竹二线、110kV南中线和110kV大宏线后转向西南方向走线并接入水江北牵引变,线路路径示意图见附图2。

4.110kV 大宏线迁改工程

线路起于原110kV 大宏线81#塔,止于原110kV 大宏线85#塔。线路在原110kV 大宏线81#塔利用原有线路向西北方向走线至本期新建 AG1#塔(原82#大号侧约5m 处),在 AG1#塔处转向西南方向走线至本期新建 AG3#塔(原84#小号侧约5m 处),在 AG3#塔处继续向西南方向走线至原110kV 大宏线85#塔,并接入原线路。线路路径图见附图 2。

5.施工布置

5.1 宏墙 220kV 变电站间隔扩建工程

宏墙220kV 变电站间隔扩建工程本期间隔扩建工程施工活动集中在站内,施工不

需要设置施工营地,施工材料利用站内现有空地。

5.2 输电线路工程

(1) 施工道路布置

根据设计资料,本项目施工期可利用沿线已有的村间道路、机耕道路、渝湘铁路施工便道以及山间消防通道等,线路沿线交通条件较好,施工可充分利用现有硬化道路将线路施工材料运输至塔基附近后采用人背马驮的方式运至塔基处,不需要开辟施工便道。

(2) 塔基施工场地布置

塔基基础施工临时场地以单个塔基为单位分散布置。在塔基施工过程中每处塔基都有一处施工临时占地作为施工场地,用作塔基基础施工和铁塔组立,兼做材料堆放场地。由于施工工艺需要,场地选择需紧邻塔基处,尽量选择塔基四周平坦、植被稀疏一侧,尽量利用草地或植被稀疏的灌木林地,以减少土地平整导致的水土流失和植被破坏。根据《重庆渝湘铁路水江北牵引站220千伏外部供电工程水土保持方案报告表》,本项目新建杆塔共约28基,塔基施工场地总占地面积约2965m²。

(3) 牵张场布置

本项目输电线路施工期拟设置2处牵张场,单个牵张场占地约600m²,总占地面积约1200m²,目前具体牵张场位置尚未确定,牵张场具体位置在施工阶段根据现场实际地形条件按以下原则进行确定:

- ①位于塔基附近,便于放紧线施工;
- ②临近既有道路,便于材料运输;
- ③场址场地宽敞平坦,便于操作,利于减少场地平整的地面扰动和水土流失;
- ④选址应尽量避让植被密集区、避让耕地,以占用较低矮、稀疏的灌丛、草丛为主,以减少对当地植被和农作物的破坏。

(4) 电缆排管施工临时场地布置

电缆排管开挖的土方堆放在沟槽一侧,考虑临时堆土等施工占地,排管线路施工作业带宽约3m,临时占地面积约1440m²;顶管开挖不涉及地表扰动,仅计列拖管施工场地2处,临时占地共计60m²。

(5) 其他临建设施

线路主要的材料站和相关办公场地均租用当地房屋,不进行临时建设。材料站主 要堆放塔材、导线、地线、绝缘子、金具和水泥等,其中水泥堆放在室内,当各塔位 基础施工时由汽车分别运至各塔位附近公路旁,然后由人抬马驮的方式运至塔位。

4. 停电方案

根据设计资料,本项目施工期仅需对 110kV 大宏线进行停电,本项目施工期对 110kV 大宏线进行迁改时,预先将新建铁塔基础进行浇筑,并将铁塔组建至施工安全 高度后,再对 110kV 大宏线进行停电操作,预计对 110kV 大宏线停电约 6 天。

110kV 大宏线起于宏墙220kV 变电站,止于110kV 大梁子风电场,为大梁子风电场电力外送线路,110kV 大宏线停电期间,大梁子风电场可向其他变电站外送电力,因此本项目施工期不影响大梁子风电场正常运行,本期工程不修建临时线路。

1.间隔扩建工程

间隔扩建施工主要分为三个阶段:施工前期、基础施工和设备安装工程组成。

(1) 施工前期

主要施工内容包括施工场地布置、间隔位置清理、设备运输等。

(2) 基础施工

本次新加设备基础位于挖方区,采用天然地基,局部采用毛石混凝土换填,基础均采用现浇混凝土基础。

(3)设备安装工程

设备安装采用机械结合人工吊装和安装。

2.新建架空线路

线路施工主要分为杆塔基础、杆塔组立和导线架设几个步骤,施工在线路路径方向上分段推进,即在一个工段上完成基础、立塔和架线后再进行下一个工段的施工。 各工序安排见图 2-6。

施工 方案

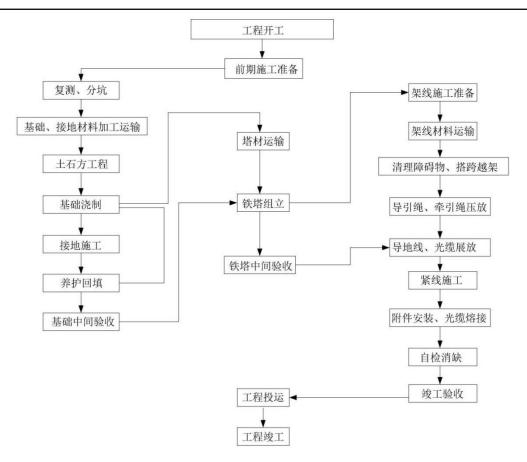


图 2-6 线路施工工序流程图

(1) 基础施工

本项目采用人工挖(钻)孔桩基础,施工流程为: 挡土墙、排水沟开挖→塔腿基础坑开挖→接地槽开挖→绑扎钢筋→浇注塔腿基础混凝土→基坑回填→余土处置→平整恢复。

(2) 铁塔组立施工

采用内拉线悬浮抱杆或外拉线悬浮抱杆分段分片吊装。铁塔组立采用分片分段吊装的方法,按吊端在地面分片组装,吊至塔上合拢,地线支架与最上段塔身同时吊装。 吊装或大件吊装时,吊点位置要有可靠的保护措施,防止塔材出现硬弯变形。

(3) 架线施工

本项目采用无人机放线工艺。用无人机牵着迪尼码绳在空中展放牵引绳,再配合牵引机用牵引绳带动导线,可不用开辟放线通道,减少对地面植被的损伤。

(4) 原有杆塔及导线拆除

协调停电→拆除导地线→从上而下拆除杆塔→拆除塔基基础地上部分→整理收集拆除材料→交由电力公司物资回收部门处理。

本项目拟拆除杆塔的塔基基础均为混凝土结构,且塔基基础埋深较深,整体拆除

难度较大,且拆除过程中开挖量较大,造成新的生态扰动及水土流失影响更大,因此本项目将对塔基基础地上部分进行拆除,地下部分采取保留,并对塔基基础根据周边用地性质进行覆土恢复耕作或生态恢复。拆除塔基基础地上部分产生的建筑垃圾随拆除的杆塔一并清运出塔基占地处,并及时清运至建筑垃圾消纳场,严禁随意丢弃。

3.新建电缆线路

本项目新建电缆线路采用电缆排管,施工期线路在穿越沪渝高速段采用顶管开挖, 线路其余段采用明开挖。

(1) 明开挖电缆排管

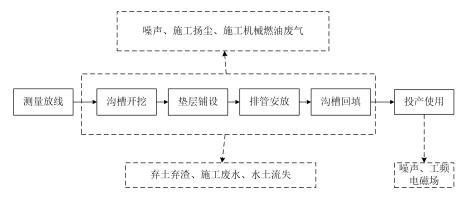


图 2-7 施工期明挖电缆排管产污环节示意图

(2) 顶管开挖

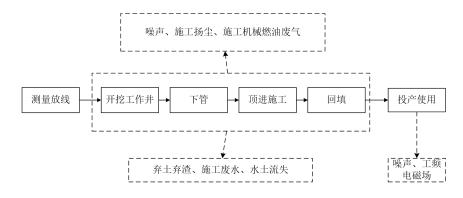


图2-8 施工期顶管施工产污环节示意图

(3) 电缆敷设

电缆敷设一般先要将电缆盘架于放线架上,将电缆线盘按线盘上的箭头方向由人工或机械牵引至预定地点。

4.施工周期

根据设计资料,本项目施工期6个月。

其他 无

三、生态环境现状、保护目标及评价标准

1.生态环境

1.1 主体功能区划

根据《重庆市主体功能区规划》,本项目所在区域属于重庆市重点开发区域。

本功能区功能定位及发展目标:①合理调整国土空间,适度扩大服务业、制造业、交通、公共服务设施和城市居住等建设空间,减少农村生活空间,适当扩大绿色生态空间;②加快城镇化进程,做优做强主城特大都市,提速发展区域性中心城市,发展壮大中小城市,增强城镇功能和承载能力,基本现成分工协作、优势互补、结构合理、集约高效的城镇群;③加快产业发展,稳定提高农产品保障能力,大力发展现代制造业和生产服务业,引导产业集中到园区发展,引导产业分区布局,加快产业集聚,培育产业集群,快速增强产业的总体实力和综合竞争力;④促进人口集聚,完善市政基础设施和公共服务设施,增强人口吸纳能力,改善人居环境,促进流动人口定居,实现人口集聚规模较快增长;⑤提高发展质量,转变发展方式,控制开发时序,保护好生态环境和基本农田,降低单位产出的资源消耗和污染排放,提高单位空间的产出效率和人口集聚密度。

生态

环境

现状

1.2 生态功能区划

根据《重庆市生态功能区划修编(2008)》,本项目所在地属于 IV2-1 南川-万盛常绿阔叶林生物多样性保护生态功能区,见下图 3-1。

本生态功能区位于所属生态亚区的东部,包括南川区和万盛区,幅员面积 3167.68km²,占生态亚区面积的 36.97%。本区生态功能保护与建设的主导方向是生态恢复、污染控制、污染防治和环境美化。

重点任务是提高森林植被的覆盖率,调整森林结构,恢复常绿阔叶林的乔、灌、草植被体系,保护、完善山地森林生态系统结构,改善物种的栖息环境,强化水土保持与水文调蓄功能。加强矿山生态保护和恢复。重点加强矿山开采的生态监控,严禁审批不符合建设条件和对生态环境破坏严重的拟建矿山,限制在地质灾害易发区开采矿山,禁止在地质灾害危险区、自然保护区开采矿产资源。

项目与生态功能区位置关系详见图 3-1。

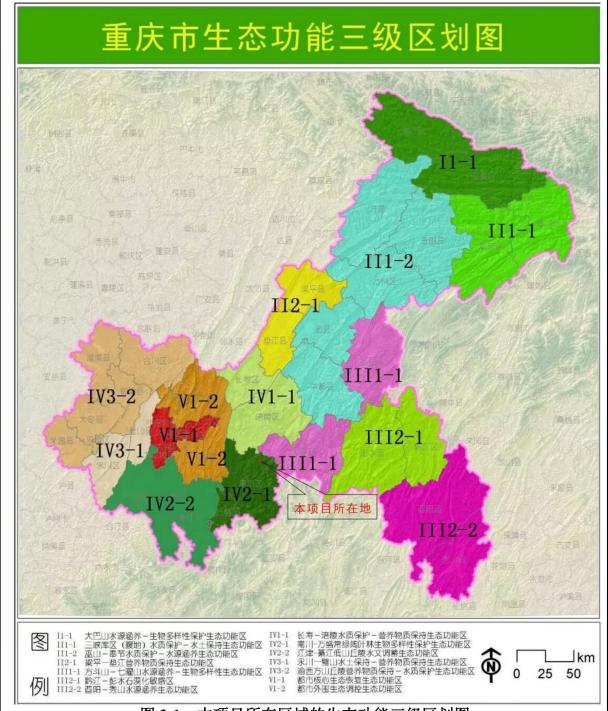


图 3-1 本项目所在区域的生态功能三级区划图

1.3 生态环境现状

1.3.1 土地利用类型

根据《重庆渝湘铁路水江北牵引站 220 千伏外部供电工程水土保持方案报告表》,本项目总占地面积 10538m², 其中永久占地 4873m², 临时占地 5665m², 占地类型主要为林地和其他土地等,永久占地为宏墙 220kV 变电站间隔扩建工程本期征地(本期利用)、输电线路塔基占地以及电缆排管竖井占地,临时占地为电缆排管施工临时占地、塔基处施工临时用地、牵张场等占地等。详见下表 3-1。

表3-1 本项目占地面积一览表

上抽米刑		耕地	林北	也	草地	交通运输用地	其他土地	今 社
	占地类型	旱地	乔木林地	灌木林地	其他草地	公路用地	裸土地	T II
Ī	占地面积 m ²	500	900	3688	1100	1750	2600	10538

1.3.2 植被

根据现场调查,本项目宏墙 220kV 变电站间隔扩建侧及电缆线路沿线受园区建设 影响, 地表植被较为稀疏, 主要为松树、杂草等。

架空线路沿线以灌木林地为主,区域优势树种为松树、杉树、柏树,并间杂有常 见树种,如构树、马桑、栎树、青冈等。根据现场调查,野外调查期间工程评价范围 内未发现《国家重点保护野生植物名录》(2021年)及《重庆市市级重点保护野生植 物名录》(2023年)中重点保护野生植物,未发现《中国生物多样性红色名录》中列 为极危(Critically Endangered)、濒危和易危的物种,未发现国家和地方政府列入拯 救保护的极小种群物种,未发现区域特有种以及古树名木等。工程沿线典型植被情况 见下图。

宏墙 220kV 变电站间隔扩建侧及电缆线路沿线(松树、少量杂草)

宏墙 220kV 变电站间隔扩建侧及电缆线路沿线(松树、少量杂草)

图 3-2 宏墙 220kV 变电站间隔扩建侧及电缆线路沿线典型植被类型

架空线路沿线(松树、灌木丛等)

1.3.3 动物

根据现场调查,本项目线路沿线人为活动较为频繁,线路沿线动物主要以人工饲养家禽、鼠类以及麻雀等常见动物为主,现场调查期间,工程评价范围内未发现珍稀野生保护动物。

2.环境空气质量现状

根据《重庆市环境空气质量功能区划分规定》(渝府发[2016]19 号)规定,本项目所在区域为空气质量二类功能区,评价标准按《环境空气质量标准》(GB3095-2012)二级标准执行。

项目所在区域基本环境污染物(SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$. O_3 .CO)现状数据引用于《2022 年重庆市生态环境状况公报》中南川区数据进行评价,区域空气质量现状评价结果详见下表 3-2。

污染物	年评价指标	现状浓度 (μg/m³)	标准值 (µg/m³)	占标率	达标情况
SO_2		9	60	15.00%	达标
NO ₂		25	40	62.50%	达标
PM_{10}	十十均 似 及	49	70	70.00%	达标
PM _{2.5}		31	35	88.57%	达标
CO (mg/m ³)	日均浓度的第95百分位数	0.8	4	20.00%	达标
O ₃	日最大 8h 平均浓度的第 90 百分位数	118	160	73.75%	达标

表 3-2 区域空气质量现状评价表

由表 3-2 可知,区域环境空气中 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ O₃.CO 浓度均满足《环境空气质量标准》(GB3095-2012)中的二级标准,属于环境空气质量达标区。

3.地表水环境质量现状

根据现场调查,本项目所在区域地表水为鱼泉河。

根据《重庆市人民政府批转重庆市地表水环境功能类别调整方案的通知》(渝府发〔2012〕4号)、《万州区等36个区县(自治县)集中式饮用水水源保护区调整方案(2016年)》以及《南川市人民政府关于印发南川市地表水域适用功能类别划分规定的通知》(南川府发〔2006〕74号),本项目所在区域鱼泉河河段处非饮用水源保护区,水体功能为农业兼工业用水,水环境质量执行《地表水环境质量标准》

(GB3838-2002) III类水质标准。

根据南川区生态环境局发布的《2021年12月全区河流水环境质量通报》及《2022年1月南川区河流水环境质量通报》,鱼泉河位于与园区水江组团交界处监测断面达到III类水质,满足《地表水环境质量标准》(GB3838-2002)III类水质标准。

4.电磁环境质量现状

为了解项目区域电磁环境现状,我公司委托有监测资质单位对项目所在地电磁环境质量现状进行了监测。

根据监测结果,220kV 宏墙变电站间隔扩建侧工频电场强度监测值为39.21V/m,工频磁感应强度监测值为0.0795µT,低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及100µT 的公众曝露控制限值。

根据监测结果,拟建220kV宏水牵I、II线沿线工频电场强度监测值在 $(1.408\sim1855)$ V/m 之间、工频磁感应强度监测值在 $(0.0168\sim1.898)$ μ T 之间,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100 μ T 的公众曝露控制限值。

根据监测结果,原 110kV 大宏线沿线典型监测点位工频电场强度监测值在 (106.4~233.6) V/m 之间、工频磁感应强度监测值在 (0.2158~0.6161) µT 之间,110kV 大宏线迁改线路沿线典型监测点位工频电场强度监测值为 22.51V/m、工频磁感应强度监测值为 0.1085µT,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100µT 的公众曝露控制限值。

项目所在区域电磁环境现状评价详见《重庆渝湘铁路水江北牵引站 220 千伏外部供电工程电磁环境影响专项评价》。

5.声环境质量现状

5.5.1 声环境功能区划

根据《重庆市南川区声环境功能区划分调整方案》(2023 年),宏墙 220kV 变电站 110kV 间隔扩建侧 200m 范围内位于水江大道两侧 25m 范围内执行《声环境质量标准》(GB3096-2008)中 4a 类标准要求,间隔扩建侧 200m 范围内其余区域执行 3 类区标准要求。

根据《重庆市南川区声环境功能区划分调整方案》(2023 年),本项目新建线路沿线部分区域划定为了 3 类、4a 类及 4b 类声功能区,部分区域未划分具体声功能区。本次评价对线路沿线已划分声功能区部分执行相应的声环境质量标准,对未划分具体声功能区部分根据《重庆市南川区声环境功能区划分调整方案》(2023 年)中声环境功能区类别及管控要求执行 2 类标准,详见表 3-13 及附图 7。

5.5.2 声环境监测布点情况

本次评价共设 11 个监测点位,其中宏墙 220kV 变电站间隔扩建工程 1 个,拟建 220kV 宏水牵 I、II 线 8 个,110kV 大宏线迁改工程 2 个。具体噪声监测点位见表 3-3。

附图 2 及附图 3。

表 3-3 本项目噪声监测点位一览表

序号	监测点位	监测点位描述	东经	北纬	代表性 分析	声功能区	代表监测点 位	
1	拟建电缆 正上方	监测点位于拟建电缆正上方,距离 10kV 宏中线边导线水平距离约 13 米,距离	**	**	线路沿	4a 类	1-4-	1#
2	拟建电缆 正上方	监测点位于拟建电缆正上方,距离 10kV 宏中线边导线水平距离约 20 米,距离 最低导线垂直距离约 10 米。	**	**	线背景	3 类		2#
3	宏墙 220kV 变 电站西北 侧	厂界环境噪声位于围墙外 2 米处(围墙外 1 米处不具备 监测条件)。	**	**	宏墙变 电站间 隔扩建 侧	3 类	渝雍 环监 (委) 〔202 3〕074 号	3#
4	重勇程司万(石型村市筑限产磷的制度, 市筑限产磷的制质目 等。	监测点位于重庆市博勇建 筑工程有限公司年产 40 万 吨磷(脱硫)石膏制新型轻 质建材项目部旁,拟建线路 正下方,距离 500kV 张竹二 线边导线水平距离约 24 米, 距离最低导线垂直距离约 40 米。	**	**	线路沿 线背景 监测点	3 类		4#
5	重勇程司万(石型材庆建有年吨硫制质目轻项的产品。	监测点位于重庆市博勇建 筑工程有限公司年产 40 万 吨磷(脱硫)石膏制新型轻 质建材项目部旁,拟建线路 正下方,距离 500kV 张竹二 线边导线水平距离约 7 米, 距离最低导线垂直距离约 40 米。	**	**	线路沿 线背景 监测点	3 类		5#
6	拟建线路 正下方	监测点位于拟建线路正下方。	**	**	线路沿 线背景 监测点	3 类		7#
7	拟建线路 正下方	监测点位于拟建线路正下方,距离 10kV 宏渝线边导线水平距离约 13 米,距离 最低导线垂直距离约 12 米。	**	**	线路沿 线背景 监测点	4b类		8#
8	拟建线路 正下方	监测点位于拟建线路正下方。	**	**	线路沿 线背景 监测点	3 类		9#
9	南川区水 江镇大地 村	监测点位于拟建线路正下方,距离 110kV 大宏线边导线水平距离约 36 米,距离 最低导线垂直距离约 53 米。	**	**	迁改线 路背景 监测点	3 类	渝雍 环监 (委) 〔202	补 1-1#
10	南川区水 江镇大地 村	监测点位于110kV大宏线正下方,距离最低导线垂直距离约53米。	**	**	原 110kV 大宏线 达标情	3 类	3)146 号	补 1-2#

					况			
11	重勇程司万(石型材庆建有年吨硫制质轻项间产吨硫制质目	监测点位于重庆市博勇建筑工程有限公司年产 40 万吨磷(脱硫)石膏制新型轻质建材项目部旁,500kV张竹二线正下方,距离最低导线垂直距离约 40 米。	**	**	线路沿 线背景 监测点	3 类	渝雍 环监 (委) 〔202 4〕008 号	补 2-3#

3.5.3 声环境监测布点合理性分析

本次评价共设了11处监测点位,均为实测,典型性和合理性分析如下。

表 3-4 噪声监测点位合理性

工程名称	声环境 保护目 标情况	监测	点位数 量	代表性分析	所在功 能区
宏墙 220kV 变电站间隔 扩建工程	无	1 处	3#	220kV 宏墙变电站间隔扩建西北侧厂界监测 点	3 类
			1#	拟建电缆线路段背景监测点	4a 类
			2#	拟建电缆线路段背景监测点	3 类
			4#	拟建220kV 宏水牵 II 线架空线路背景监测点	3 类
新建 220kV			5#	拟建 220kV 宏水牵 I 线架空线路背景监测点	3 天
宏水牵 I、II 线工程	无	8 处	补 2-3#	拟建 220kV 宏水牵 I、II 线架空线路并行走 线中部背景监测点	3 类
			7#	拟建 220kV 宏水牵 I 线架空线路背景监测点	3 类
			8#	拟建220kV 宏水牵 II 线架空线路背景监测点	4b 类
		9#	拟建220kV 宏水牵 II 线架空线路背景监测点	3 类	
110kV 大宏	无	2 45	补 1-1#	迁改线路线下监测点	3 类
线迁改工程		2处	<u>├</u>	原 110kV 大宏线 81#-85#段线下监测点	3 类

(1) 宏墙 220kV 变电站间隔扩建工程

共设点位1个,位于间隔扩建厂界外(3#)。

间隔扩建侧评价范围内无声环境保护目标分布,故未布设监测点位。

(2) 新建 220kV 宏水牵 I、II 线工程

根据现场调查,拟建架空线路沿线无声环境保护目标分布,本次环评在拟建 220kV 电缆线路沿线布设了 2 个背景监测点位(1#、2#),在拟建 220kV 宏水牵 I 线架空线路线下布设了 2 个背景监测点位(5#、7#),在拟建 220kV 宏水牵 II 线架空线路线下布设了 3 个背景监测点位(4#、8#、9#),在拟建 220kV 宏水牵 I、II 线架空线路并行走线中部布设了 1 个监测点位(补 2-3#)。

(3) 110kV 大宏线迁改工程

①在正运行中的原 110kV 大宏线 81#-85#段正下方导线对地较低处布设了 1 个监

测点位(补1-2#)来反映原有线路沿线声环境质量现状。

②根据现场调查,迁改线路沿线无声环境保护目标分布,本次评价在迁改线路线下布设了1个监测点位(补1-1#)。

综合上述分析,本次评价监测点位布设较为合理,可以满足《环境影响评价技术导则 输变电》(HJ24-2020)及《环境影响评价技术导则 声环境》(HJ2.4-2021)相关监测布点要求。

3.5.4 监测频次

各监测点位昼、夜间各监测一次。

3.5.5 监测时间及监测条件

监测单位: 重庆雍环环境监测中心(有限合伙)

监测时间及监测环境条件见表 3-5~表 3-6。

表 3-5 监测时间及监测环境条件

监测日期	天气	风速(m/s)
2023年6月6日-2023年6月7日	晴	0∼0.7m/s
2023年12月13日	晴	0∼2.2m/s
2024年1月18日	阴	0∼1.0m/s

表 3-6 监测期间运行负荷表

		(2023	年6月6日(08时00分	~2023年6	月7日08日	付00分)		
ı i	压	最低	最高	最低	最高	最低	最高	最低	最高
1	三名称	有功	有功	无功	无功	电压	电压	电流	电流
守级-	7.在你	MW	MW	MVar	MVar	kV	kV	A	A
宏墙	2#主变	95.37	112.53	12.73	20.37	230.4	233.5	278.9	310.6
220kV 变电站	3#主变	88.64	103.57	14.12	19.63	230.4	233.2	245.7	305.7
500kV 引	长竹二线	189.77	267.88	12.83	26.57	528.7	535.6	287.3	385.9
110kV	南中线	19.33	35.75	2.11	4.56	113.5	115.3	105.3	189.7
110kV	大宏线	5.14	16.66	1.69	5.48	113.4	115.7	34.7	110.3
		(2023年	12月13日:	15时00分	~2023年12	月13日2	3时59分)	
ф	压	最低	最高	最低	最高	最低	最高	最低	最高
_	三名称	有功	有功	无功	无功	电压	电压	电流	电流
一 守级-	3/口你	MW	MW	MVar	MVar	kV	kV	A	A
110kV	大宏线	18.67	21.13	1.21	2.11	114.41	115.44	112.71	163.73
		<u>2024年</u>	三1月18日	15时00分	~2024年1	月18日23	时00分		
 	压	最低	最高	最低	最高	最低	最高	最低	最高
1	五 三名称	有功	有功	无功	无功	电压	电压	电流	电流
守级-	7/口/小	MW	MW	MVar	MVar	kV	kV	A	A
500kV 引	长竹二线	191.73	269.21	2.34	7.99	530.1	535.6	287.3	385.9
110kV	南中线	21.93	38.67	0.31	3.11	114.3	115.3	92.3	195.7
110kV	大宏线	9.77	20.31	0.22	1.48	114.2	115.6	89.5	133.7

注: 监测时主变正常运行。

3.5.6 监测方法及仪器

(1) 监测方法

《声环境质量标准》(GB3096-2008);

《工业企业厂界环境噪声排放标准》(GB12348-2008);

《环境噪声监测技术规范 噪声测量值修正》(HJ706-2014)。

(2) 监测仪器

监测仪器情况见表 3-7。

表 3-7 监测仪器情况一览表

仪器名称及型号	仪器编号	计量校准/检定证 书编号	有效期至	监测报告
多功能声级计 AWA6228+	00311141	2022092104101	2023年9月23日	渝雍环监(委)
声校准器 AWA6221A	1008019	2022092104100	2023年9月23日	〔2023〕074 号
多功能声级计 AWA5688	00312148	2023032401832	2024年4月2日	渝雍环监(委)
声校准器 AWA6221B	2009333	2023040600118	2024年4月9日	〔2023〕146 号

3.5.7 声环境质量监测结果

监测点位噪声监测结果见表 3-8。

表 3-8 项目环境噪声监测结果 单位: dB(A)

序		昼	间	夜	间	评价	标准	· 监测报告』	大洞 占	所属工
	监测点位	测量	修约	测量	修约	昼	夜间		並拠尽	程
		值	值	值	值	间		12/		,
1	拟建电缆正上方	66.0	66	50.7	51	70	55		1#	新建
2	拟建电缆正上方	52.8	53	50.0	50	65	55		2#	220kV 宏水牵 I、II 线 工程
3	宏墙 220kV 变电站 西北侧	50.4	50	49.3	49	65	55	Mark IT	3#	宏墙 220kV 变电站 间隔扩 建工程
4	重庆市博勇建筑工程有限公司年产40万吨磷(脱硫)石膏制新型轻质建材项目部	57.8	58	51.9	52	65	55	渝雍环 监(委) 〔2023〕 074号	4#	新建
5	重庆市博勇建筑工程有限公司年产40万吨磷(脱硫)石膏制新型轻质建材项目部	59.8	60	49.7	50	65	55		5#	220kV 宏水牵 I、II 线 工程
6	拟建线路正下方	44.2	44	42.3	42	65	55		7#	
7	拟建线路正下方	44.9	45	43.1	43	70	60		8#	
8	拟建线路正下方	44.1	44	42.6	43	65	55		9#	

9	南川区水江镇大地 村拟建线路正下方	46.8	47	42.9	43	65	55	渝雍环 监(委)	补 1-1#	110kV 大宏线
10	南川区水江镇大地村110kV大宏线正下方	46.7	47	42.9	43	65	55	(2023) 146号	补 1-2#	· 八宏线 · 迁改工 · 程
11	重庆市博勇建筑工程有限公司年产40万吨磷(脱硫)石膏制新型轻质建材项目部	59.4	59	49.7	50	65	55	渝雍环 监(委) 〔2024〕 008 号	补 2-3#	新建 220kV 宏水牵 I、II 线 工程

(1) 宏墙 220kV 变电站间隔扩建工程

根据监测结果,宏墙 220kV 变电站西北侧厂界噪声昼间监测值为 50dB(A),夜间监测值为 49dB(A),满足《工业企业厂界环境噪声排放标准》(GB1234-2008)"3 类"排放限值要求。

(2) 新建 220kV 宏水牵 I、II 线工程

线路沿线 3 类区内典型监测点位噪声昼间监测值在(44-60)dB(A)之间,夜间监测值在(42-52)dB(A)之间,声环境质量满足《声环境质量标准》(GB3096-2008)3 类标准限值要求。

线路沿线 4a 类区内典型监测点位噪声昼间监测值为 66dB(A), 夜间监测值为 51dB(A), 声环境质量满足《声环境质量标准》(GB3096-2008)4a 类标准限值要求。

线路沿线 4b 类区内典型监测点位噪声昼间监测值为 45dB(A), 夜间监测值为 43dB(A), 声环境质量满足《声环境质量标准》(GB3096-2008)4b 类标准限值要求。

(3) 110kV 大宏线迁改工程

线路沿线典型监测点位噪声昼间监测值为 47dB(A), 夜间监测值为 43dB(A), 声环境质量满足《声环境质量标准》(GB3096-2008)3 类标准限值要求。

与项 1.现有工程环保手续履行情况

(1) 宏墙 220kV 变电站

根据建设单位提供资料,宏墙 220kV 变电站属于南川 220kV 宏墙输变电工程的建设内容之一。2012年5月28日,原重庆市环境环保局以渝(辐)环准(2012)61号 文对南川 220kV 宏墙输变电工程环境影响报告表予以了批复。2017年9月25日,该工程通过了重庆市环境环保局竣工环境保护验收(渝(辐)环验(2017)047号)。

(2) 110kV 大宏线

根据建设单位提供资料,110kV 大宏线属于"武隆大梁子风电场110kV 送出工程"建设内容。

"武隆大梁子风电场 110kV 送出工程"于 2016 年 11 月 18 日取得了环评批复(渝

题

目有

关的

原有

环境

污染

和生

态破

坏问

武环准(2016)051号),2019年8月5日,国网重庆市电力公司武隆供电分公司完成了该工程竣工环境保护自主验收工作(验收意见详见附件4)。

2.与项目有关的原有环境污染和生态破坏问题

2.1 原有环境污染状况及问题

2.1.1 宏墙 220kV 变电站

与本项目有关的原有污染物主要为宏墙 220kV 变电站运行期产生的工频电场、工频磁场、噪声及变电站值守人员生活污水、生活垃圾等。宏墙 220kV 变电站已于 2017年 9月 25 日取得了验收批复(渝(辐)环验(2017)047号)。根据竣工验收调查报告及验收批复,变电站各项污染物排放的排放均满足国家相关标准要求。

根据现场调查,变电站内各项环保设施均运行正常,变电站竣工验收以来,未出现过污染事件,无历史环境遗留问题,无环保相关投诉。

根据现状监测结果,220kV 宏墙变电站间隔扩建侧工频电场强度监测值为39.21V/m,工频磁感应强度监测值为0.0795µT,低于《电磁环境控制限值》(GB8702-2014)4000V/m及100µT的公众曝露控制限值。间隔扩建侧厂界噪声昼间监测值为50dB(A),夜间监测值为49dB(A),满足《工业企业厂界环境噪声排放标准》(GB1234-2008)"3类"排放限值要求。

2.1.2 110kV 大宏线迁改工程

与本项目有关的原有污染物主要为原 110kV 大宏线运行期产生的工频电场、工频磁场、噪声等。本次环评在原 110kV 大宏线线路具备监测条件的导线对地较低处布设了 2 个监测点位,经监测,原 110kV 大宏线沿线典型监测点位工频电场强度监测值(106.4~233.6)V/m 之间、工频磁感应强度监测值在(0.2158~0.6161)μT 之间,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100μT 的公众曝露控制限值;原 110kV 大宏线 81#-85#段线路沿线典型监测点位噪声昼间监测值为 47dB(A),夜间监测值为 43dB(A),声环境质量满足《声环境质量标准》(GB3096-2008)3 类标准限值要求。

综上,本项目相关工程前期环保手续完善,项目所在区域的电磁环境、声环境等 各项指标均符合国家规定的限值要求,不存在与本项目有关的原有环境污染问题,无 环保投诉等遗留问题。

2.2 主要生态破坏问题

根据现场调查,本项目变电站出线侧及线路沿线植被主要为当地常见植被;项目周边动物以常见的鸟、兽为主,生态环境状况良好,不存在与本项目有关的原有生态

破坏问题。

1.评价范围

(1) 电磁环境

变电站: 宏墙 220kV 变电站间隔扩建侧围墙外 40m 范围内。

架空线路: 220kV 架空线路边导线地面投影外两侧各40m, 110kV 架空线路边导线地面投影外两侧各30m。

电缆线路: 电缆管廊两侧边缘各外延5m(水平距离)。

(2) 声环境

变电站: 宏墙 220kV 变电站间隔扩建侧围墙外 200m 范围内。

220kV 架空线路: 220kV 架空线路为边导线地面投影外两侧各40m; 110kV 架空线路为边导线地面投影外两侧各30m。

电缆线路:可不进行声环境影响评价。

(3) 生态环境

变电站:宏墙 220kV 变电站间隔扩建侧围墙外 500m 范围内。

架空线路:架空线路边导线地面投影外两侧各 300m 带状区域范围内。

电缆线路: 电缆管廊两侧各 300m 内的带状区域。

2、环境保护目标

根据《环境影响评价技术导则输变电》(HJ24-2020)中"4.8 环境敏感目标"条款要求,输变电工程的环境敏感目标主要为水环境敏感区、电磁和声环境保护目标、生态敏感区。

2.1 水环境敏感区

通过现场踏勘和资料分析,本项目变电站间隔扩建侧及输电线路沿线评价范围内 无地表水体分布,本项目不涉及《环境影响评价技术导则 地表水环境》(HJ2.3-2018) 中水环境保护目标。

2.2 生态敏感区

根据现场调查,本项目变电站间隔扩建侧及输电线路沿线评价范围内不涉及《环境影响评价技术导则 生态影响》(HJ 19-2022)中生态敏感区,不涉及生态保护红线。

根据现场调查,野外调查期间变电站间隔扩建侧及输电线路沿线评价范围内未发现《国家重点保护野生植物名录》(2021年)及《重庆市市级重点保护野生植物名录》(2023年)中重点保护野生植物,未发现《中国生物多样性红色名录》中列为极危(Critically Endangered)、濒危和易危的物种,未发现国家和地方政府列入拯救保护

生态

环境 保护

目标

的极小种群物种, 未发现区域特有种以及古树名木等。

根据现场调查,野外调查期间变电站间隔扩建侧及输电线路沿线评价范围内未发 现《国家重点保护野生动物名录》(2021年)及《重庆市重点保护陆生野生动物名录》 (渝林规范〔2023〕2号)中国家级及重庆市级重点保护野生动物。

2.3 电磁及声环境保护目标

2.3.1 宏墙 220kV 变电站间隔扩建工程

(1) 电磁环境保护目标

根据现场调查,宏墙 220kV 变电站间隔扩建侧围墙外 40m 电磁环境影响评价范围 内无电磁环境保护目标分布。

(2) 声环境保护目标

根据现场调查, 宏墙 220kV 变电站间隔扩建侧围墙外 200m 声环境影响评价范围 内无声环境保护目标分布。

(3) 规划环境保护目标

①规划电磁环境保护目标

根据南川工业园区水江组团控制性详细规划,宏墙 220kV 变电站间隔扩建侧围墙 外 40m 范围内为规划工业用地,本项目规划电磁环境保护目标详见下表及附图 6。

表 3-9 宏墙 220kV 变电站间隔扩建工程规划电磁环境保护目标一览表

序号	环境保护目标 名称	方位及最 近距离	评价范围 内数量	建筑物楼 层、高度	功能	环境保 护要求 ^①	代表	监测点位
1	变电站西北侧 规划工业用地	变电站西 北侧,紧 邻	/	尚未建设	工厂	E, B	利用 2#	渝雍环监 (委) (2023) 074号
备泊	E: ①E—工频电均	あ,B —工频码	 兹场 。					

②规划声环境保护目标

根据南川工业园区水江组团控制性详细规划,宏墙 220kV 变电站间隔扩建侧围墙 外 200m 声环境影响评价范围内为规划工业用地,无规划声环境保护目标分布,详见 附图 6。

生态环境保护目

2.3.2 新建 220kV 宏水牵 I、II 线工程

(1) 现状电磁及声环境保护目标

根据现场调查,本项目拟建 220kV 宏水牵 I、II 线电缆线路沿线评价范围内无电磁环境保护目标分布。

根据现场调查,本项目拟建 220kV 宏水牵 I、II 线架空线路沿线评价范围内无声环境保护目标分布,分布有 3 处电磁环境保护目标,详见表 3-10。

表 3-10 新建 220kV 宏水牵 I、II 线电磁环境保护目标一览表

			与 220kV	宏水牵I线	与 220kV 5	宏水牵 II 线								
	编	环境敏感目		置关系		置关系	 与其他并行线路位	 评价范围	建筑物楼		环境		监测点	对应
	号	标名称	方位及	设计导线	方位及	设计导线	置关系	内数量	医现物按 层、高度	功能	保护	1 (1)	· 血火 点 位	图示
	,	441-1141	最近距	对地最低	最近距	对地最低	且八小	门妖玉			要求②		J/_	121/1,
			离 ^①	高度®	离①	高度 [®]								
							500kV 张竹一线东							
		重庆市博勇	线路西		사미 대대 4시		南侧约 40m, 500kV	1层坡顶房	1层坡顶					B/1 15-1
	1	建筑工程有	北侧最	约 25m	线路跨越	约 26m	张竹二线跨越,	屋4栋,约	房屋4栋,	工厂	E, B	4#、		附图
		限公司项目 部★	近约 17m		越		110kV 南中线北侧 约 40m, 110kV 大宏	10 人	高约 4.5m			5#		3-1
		다 🗶	1 / 111				约 40m, 110kv 人名 线北侧约 56m							
╟							500kV 张竹一线东						渝雍	
		南川工业园			线路西		南侧约 44m, 500kV	1层坡顶房	1层坡顶				环监	附图
	2	水江组团黄	/	/	北侧最	约 24m	张竹二线西北侧约	屋 1 栋,1	房屋1栋,	库房	E, B	/	(委)	3-1
		**家库房			近约 13m		43m	人	高约 3.5m				(202	
		重庆众城再			线路西		500kV 张竹一线东	1 层平顶房	1 层平顶				3) 074	
	3	生资源综合	/	/	北侧最	约 26m	南侧约 28m,500kV	屋1栋(楼	房屋1栋,	工厂	E, B	,	号	附图
		利用有限公	,	,	近约 26m	\$ J 20111	张竹二线西北侧约	顶不可到	高约 3m	/	LVD			3-1
		司门卫室			2.53 20III		52m	达),1人	14123 3111					
		重庆市盛邦	线路西				 110kV 大宏线东南	1层平顶房	1 层平顶					
	(4)	石粉有限公	南侧最	约 26m		/	侧约 5m, 110kV 南	屋1栋(楼	房屋1栋,	工厂	Е、В	6#		附图
		司门卫室★	近约				中线东南侧约 17m	顶不可到	高约 3m	,				3-1
L			38m					达),1人						

(5)	中铁十八局 集团材料库 房★	/	线路东 南侧最 近约 25m	约 25m	无	1 层坡顶彩 钢棚 3 栋, 约 25 人	1 层坡顶 彩钢棚 3 栋,高约 3~6m	工厂	E, B	10#		附图 3-2	
-----	----------------------	---	----------------------	-------	---	-----------------------------	--------------------------------	----	------	-----	--	-----------	--

注:①线路与周围环境敏感目标的相对位置根据目前设计阶段线路路径及居民住宅分布情况得出,最终距离以实际建设情况为准;②E—工频电场;B—工频磁场;③导线对地高度根据设计资料平断面图所得,线路与环境保护目标的实际线高可能会随着后续设计深入而有所变化;④★本项目典型监测点位。

(2) 规划电磁及声环境保护目标

根据南川工业园区水江组团控制性详细规划,本项目拟建 220kV 宏水牵 I、II 线电缆线路沿线评价范围内无规划声环境保护目标,电缆线路沿线评价范围内分布有 1 处规划电磁环境保护目标,详见附图 6。

根据南川工业园区水江组团控制性详细规划,本项目拟建 220kV 宏水牵 I、II 线架空线路沿线评价范围内无规划声环境保护目标,架空线路沿线评价范围内分布有 1 处规划电磁环境保护目标,详见表 3-11 及附图 6。

表 3-11 拟建 220kV 宏水牵 I、II 线沿线评价范围内规划电磁环境保护目标一	表 3-11	拟建 220kV	宏水牵 I、	II 线沿线评价	范围内规划甲	电磁环境保护	'目标-	−览表
--	--------	----------	--------	----------	--------	--------	------	-----

编	环境敏	架设方	与 220kV 宏》 对位置		与 220kV 宏: 对位置		评价范围	建筑物楼		环境			对应
	感目标 名称	式 式	方位及最近 距离 [©]	设计导线 对地最低 高度 [®]	方位及最 近距离 ^①	设计导线 对地最低 高度 [®]	内数量	建 现物接层、高度	功能	保护 要求 ^②	代表出	监测点位	图示
1	规划工 业用地	电缆	线路穿越	/	线路穿越	/	/	尚未建设	エ厂	E, B	利用 3#	渝雍环监 (委)	附图
2	规划工 业用地	架空	线路跨越	约 19m	线路跨越	约 17m	/	尚未建设	エ厂	E, B	利用 6#	(2023) 074 号	6

注:①线路与周围环境敏感目标的相对位置根据目前设计阶段线路路径及居民住宅分布情况得出,最终距离以实际建设情况为准;②E—工频电场;B—工频磁场;③导线对地高度根据设计资料平断面图所得,线路与环境保护目标的实际线高可能会随着后续设计深入而有所变化。

2.3.3 110kV 大宏线迁改工程

(1) 现状电磁及声环境保护目标

根据现场调查,本项目 110kV 大宏线迁改线路沿线评价范围内无电磁及声环境保护目标分布,详见附图 3-2。

(2) 规划电磁及声环境保护目标

根据南川工业园区水江组团控制性详细规划,本项目 110kV 大宏线迁改线路沿线评价范围内无规划声环境保护目标,分布有 1 处规划电磁环境保护目标,详见表 3-12 及附图 6。

表 3-12 110kV 大宏线迁改线路沿线评价范围内规划电磁环境保护目标一览表

序号	环境敏感目标 名称	方位及最近距离	设计导线对地最 低高度 [©]	评价范围内数量	建筑物楼层、高度	功能	环境保护 要求 ^②	对应图示
1	规划供电用地	线路跨越	约 13m	/	尚未建设	供电用地	E, B	附图 6

注:①导线对地高度根据设计资料平断面图所得,线路与环境保护目标的实际线高可能会随着后续设计深入而有所变化;②E—工频电场;B—工频磁场。

1.环境质量标准

1.1 声环境质量标准

根据《重庆市南川区声环境功能区划分调整方案》(2023 年),宏墙 220kV 变电站 110kV 间隔扩建侧 200m 范围内位于水江大道两侧 25m 范围内执行《声环境质量标准》(GB3096-2008)中 4a 类标准要求,间隔扩建侧 200m 范围内其余区域执行 3 类区标准要求。

根据《重庆市南川区声环境功能区划分调整方案》(2023 年),本项目新建线路沿线部分区域划定为了 3 类、4a 类及 4b 类声功能区,部分区域未划分具体声功能区。本次评价对线路沿线已划分声功能区部分执行相应的声环境质量标准,对未划分具体声功能区部分根据《重庆市南川区声环境功能区划分调整方案》(2023 年)中声环境功能区类别及管控要求执行。

根据《重庆市南川区声环境功能区划分调整方案》(2023 年)中声环境功能区类 别及管控要求:

- 1类声环境功能区:指以居民住宅、医疗卫生、文化教育、科研设计、行政办公为主要功能,需要保持安静的区域。
- 2类声环境功能区:指以商业金融、集市贸易为主要功能,或者居住、商业、工业混杂,需要维护住宅安静的区域。
- 3 类声环境功能区:指以工业生产、仓储物流为主要功能,需要防止工业噪声对周围环境产生严重影响的区域。

根据现场调查,本项目部分架空线路位于南川工业园区水江组团规划区绿化用地内,该区域以工业生产为主要功能,因此本次评价对线路沿线未划分具体声功能区但位于工业园区规划区范围内的执行3类标准。

根据现场调查,本项目部分架空线路位于南川工业园区水江组团规划区外的区域位于规划区的边缘,为居住、工业混杂区,因此本次评价对线路沿线未划分具体声功能区且未在工业园区规划区范围内的执行 2 类标准,详见下表 3-13 及附图 7。

表 3-13	项目所在区域执行的声环境质量标准

- 声表		 手田		标准限值	
要素 分类	标准名称	类别	参数 名称	浓度限值	评价对象
		4a 类		昼间 70dB(A)	工程评价范围内位于水江大道两
		,		夜间 55dB(A)	侧 25m 范围内区域
	_	46 米	į.	昼间 70dB(A)	工程评价范围内位于渝黔高铁两
	// 吉环培居曼坛	有限	侧 25m 范围内区域		
声环			協書		工程评价范围内位于水江大道两侧 25m 范围内区域 工程评价范围内位于渝黔高铁两侧 25m 范围内区域 工程评价范围内位于渝则 25m 范围内区域 工程评价范围内位于南川工业园区水江组团规划区范围内,且位
境	. —	2 米	木厂	昼间 65dB(A)	区水江组团规划区范围内,且位
	(GD3070-2006)			夜间 55dB(A)	于水江大道及渝黔高铁两侧 25m
	素 标准名称 适用 类别 参数 名称 浓度限值 评价系 浓度限值 4a 类 4b 类 (GB3096-2008) 4a 类 4b 类 4b 类 4b 类 4b 类 4b 类 4b 类 4b 类 4b	范围外区域			
		2 米		昼间 60dB(A)	工程评价范围内未在南川工业园
		2 矢		夜间 50dB(A)	区水江组团规划区范围内区域

1.2 电磁环境

本项目运行期电磁环境执行《电磁环境控制限值》(GB 8702-2014),详见表3-14。

表 3-14 项目所在区域执行的电磁环境质量标准

	标准名称	适用	标准限值	直	评价对象	
	你任石你	类别	参数名称	参数名称 标准限值		
			工频电场强度	4000V/m	电磁评价范围内公众曝露控制限	
	《电磁环境控制		工频磁感应强度	100μΤ	值	
	限值》(GB	50Hz			架空线路线下的耕地、园地、牧	
	8702-2014)		工频电场强度	10kV/m	草地、畜禽饲养地、养殖水面、	
L					道路等场所的电磁环境	

2、污染物排放标准

项目施工期噪声排放执行《建筑施工场界环境噪声排放标准》(GB12523-2011)中相关要求。根据《重庆市南川区声环境功能区划分调整方案》(2023年),宏墙220kV变电站位于3类功能区,本期间隔扩建侧厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类排放标准,详见表3-15。

表3-15 项目执行的污染物排放标准明细表

要素	标准名称	适用类	标准	主值	评价对象
分类	你任石你	别	参数名称	限值	
厂界 噪声	《工业企业厂界环 境噪声排放标准》 (GB12348-2008)	3类	等效连续 A 声 级 Leq	昼间65dB(A) 夜间55dB(A)	宏墙220kV 变电站间 隔扩建侧厂界噪声
施工噪声	《建筑施工场界环 境噪声排放标准》 (GB12523-2011)	等效连	续 A 声级 Leq	昼间70dB(A) 夜间55dB(A)	施工期场界噪声

其 本项目为输变电工程,工程建成运行后其特征污染物主要为工频电场、工频磁场,均他 不属于总量控制指标,因此,无需设置总量控制指标。

四、生态环境影响分析

1.施工期产污环节

本项目施工期宏墙 220kV 变电站间隔扩建工程的建设涉及场平、基础开挖、围墙拆除和重建、设备安装等一系列施工活动; 220kV 输电线路的建设涉及场平、塔基基础及电缆排管开挖、土石方回填、电缆及导线架设等一系列施工活动; 110kV 大宏线迁改工程的建设涉及原线路杆塔和导线的拆除及场平、新建塔基基础开挖、架线等一系列施工活动,会对周围环境和生态产生一定的影响,这些影响将随着工程的完成而自然消失。施工流程及主要产污节点图见下图 4-1-4-5。

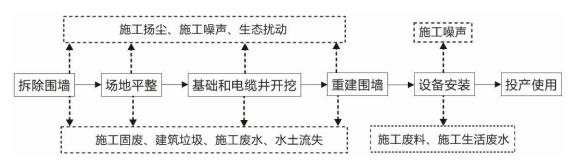


图4-1 宏墙220kV 变电站间隔扩建施工流程及产污节点示意图

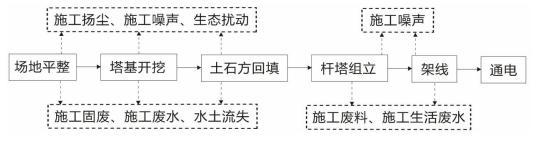


图4-2 220kV 宏水牵 I、II 线架空线路施工流程及产污节点示意图

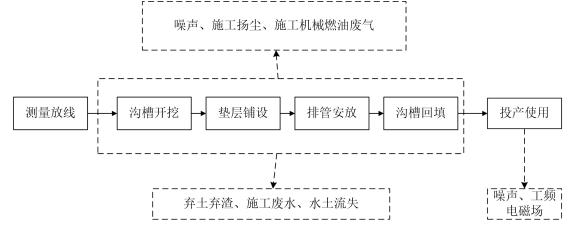


图 4-3 220kV 宏水牵 I、II 线电缆线路明挖电缆排管产污环节示意图

施期态境响析工生环影分析

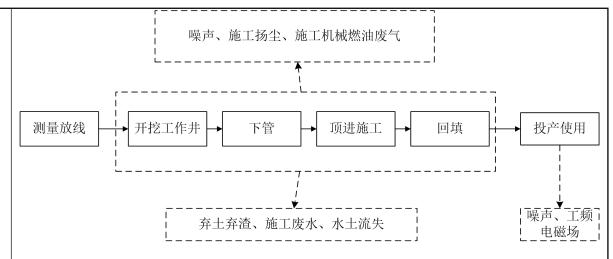


图4-4 220kV 宏水牵 I、II 线电缆线路顶管施工产污环节示意图

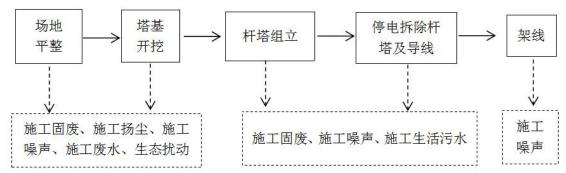


图4-5 110kV 大宏线迁改工程施工流程及产污节点示意图

2.生态环境

2.1 影响途径

本项目施工期对周边生态环境的影响主要体现在项目临时占地、永久占地及施工活动带来的影响。宏墙 220kV 变电站间隔扩建、线路塔基、电缆排管等永久占地处的开挖活动和施工场、牵张场地等临时占地将破坏地表植被,干扰野生动物的栖息。拆除工程涉及杆塔、导线、金具拆除等一系列施工活动,会对周围环境和生态产生一定的影响,这些影响将随着工程的完成而自然消失,对生态环境影响较小。

2.2 生态环境影响分析

(1) 土地利用影响

本项目占地分为永久占地和临时占地,永久占地为宏墙220kV 变电站间隔扩建工程本期征地(本期利用)、输电线路塔基占地以及电缆排管占地,临时占地为电缆排管施工临时占地、塔基处施工临时用地、牵张场占地等。项目永久占地将改变现有土地的性质和功能,永久占地和临时占地将破坏地表植被,干扰野生动物的栖息。

根据《重庆渝湘铁路水江北牵引站220千伏外部供电工程水土保持方案报告表》。

本项目总占地面积10538m²,其中永久占地4873m²,临时占地5665m²。由于本项目宏墙220kV变电站间隔扩建工程本期征地面积小,输电线路塔基占地面积小、且较为分散,工程建设不会引起区域土地利用的结构性变化,施工结束后及时清理现场,尽可能恢复原状地貌,不会带来明显的土地利用结构与功能变化。

(2) 对植被的影响

根据现场调查,本项目宏墙220kV变电站间隔扩建侧及电缆线路沿线受园区建设影响,地表植被较为稀疏,主要为松树、人工种植香樟树、杂草等,现场调查期间,未发现重点保护野生植物及古树名木分布,因宏墙220kV变电站间隔扩建侧及新建电缆线路施工量较小,占地较小,施工时间较短,施工结束后,通过及时恢复绿化,本项目对植被的影响较小。

架空线路沿线以灌木林地为主,区域优势树种为松树、杉树、柏树,并间杂有常见树种,如构树、马桑、栎树、青冈等。现场调查期间,未发现重点保护野生植物及古树名木分布,新建输电线路永久占地破坏的植被仅限塔基范围之内,占地面积小,对当地常见植被的破坏也较少。临时占地对植被的破坏主要为施工人员对植被的践踏,因本项目线路施工为点线式,砍伐仅限部分塔基周边,各个砍伐点较分散,不会造成生态破碎化,对植被生物多样性及生物量不会产生较大影响。施工完毕后,通过补栽乡土植物,被扰动的植被将逐步恢复。

(3) 对动物的影响

根据现场调查,本项目宏墙220kV变电站间隔扩建侧及线路沿线人为活动较为频繁,项目周边动物主要以家禽、家养宠物为主,野生陆生动物种类相对较少,主要是鼠类、啮齿类和一般鸟类等小动物,现场调查期间评价范围内未发现有珍稀野生动物分布。

本项目施工时间短、施工点分散,施工对动物的影响范围小,影响时间短,同时由于野生动物栖息环境和活动区域较大,食性广泛,且有一定迁移能力,只要在施工过程中加强管理、禁止捕猎,本项目施工不会对野生动物造成明显影响。

(4) 拆除线路工程

根据设计资料,本项目拟拆除3基杆塔,杆塔拆除后拟对塔基基础地上部分进行 拆除,地下部分采取保留,并对塔基基础根据周边用地性质进行覆土恢复耕作或生 态恢复。

经工程分析,杆塔拆除后塔基占地面积较小,每基杆塔仅4个基础占地,每个基

础占地约1m²,被拆除杆塔塔基均为混凝土结构,且塔基基础埋深较深,整体拆除难度较大,且拆除过程中开挖量较大,造成新的生态扰动及水土流失影响更大,因此,设计提出对塔基基础地上部分进行拆除,地下部分采取保留措施较为合理。

3.施工扬尘

3.1 污染源分析

本项目拆除工程仅拆除原杆塔及塔基基础地上部分,不对塔基基础地下部分进行开挖,故线路拆除工程不产生施工扬尘。施工扬尘主要来自于宏墙变电站部分围墙拆除、变电站间隔扩建基础开挖、线路塔基及电缆排管的表土开挖等,施工期表土开挖、回填将破坏原施工作业面的土壤结构,干燥天气尤其是大风条件下很容易造成扬尘。施工期间扬尘污染具有如下特点:

A、流动性:扬尘点不固定,多引发于料土堆放处、物料搬运通道、物料装卸地等处:

B、瞬时性:扬尘过程持续时间短、阵发性,直接受天气情况影响。大风、干燥 天气扬尘大,雨天扬尘小;

C、无组织排放:扬尘点大多数敞露,点多面广,难以采取排风集尘措施,扬尘呈无组织排放。

根据重庆市环境监测中心曾对主城区内的建筑工程施工工地的扬尘情况进行过抽样测定,测定时风速为 2.0m/s,测试结果见表 4-1。

表 4-1 建筑施工工地扬尘污染情况 单位: μg/m³

工地上风向(对照点)	工地内	工地下风向					
工地工//1四(71照点)		50 m	100 m	150 m			
316.7	595	486.5	390	322			

由表可见: 在风速 2.0m/s 时, 建筑工地的扬尘影响范围一般在其下风向约 150m 以内。

3.2 环境影响分析

根据现场调查,本项目变电站间隔扩建侧及电缆排管沿线150m 范围内分布有少量工厂,施工期通过采取设置围挡、对临时开挖土石方进行遮盖、防止物料裸露、合理堆料、加强运输车辆的管理、对干燥作业面定期进行洒水等措施,可以有效控制施工扬尘,减少施工扬尘对周边环境的影响,因工程施工量小,施工时间短,施工期对大气环境的影响是暂时的,施工结束后,其施工扬尘也将随之消失。

新建架空线路由于塔基施工点较为分散,且土石方开挖量小,塔基施工点与工厂之间通过杆塔附近的植被遮挡、吸尘,对周围大气环境影响不大。

4.地表水环境

4.1 污染源分析

施工废污水包括施工生产废水及施工人员的生活污水。

(1) 生产废水

项目施工期间废水主要来自于工程基础开挖产生的少量钻浆废水以及混凝土养护产生的少量养护废水。

(2) 生活污水

施工期生活污水主要为施工人员产生的生活污水,产生量与施工人数有关,包括粪便污水、洗涤废水等,主要污染物为 COD、BOD5 氨氮等。

根据类似工程资料,本项目施工高峰期人数约 20 人/日,按每人每天生活用水量 100L 计算,则生活用水量为 2m³/d,排水系数以 0.8 计,则生活污水产生量为 1.6m³/d。

4.2 地表水环境影响分析

根据调查,本项目新建线路沿线无水体分布。

本项目变电站间隔基础、电缆排管基础及部分位于水江大道附近杆塔具备使用 商品混凝土条件,因此施工期对变电站间隔基础、电缆排管基础以及部分位于水江 大道附近杆塔基础将采用商品混凝土,无生产废水产生,对周围环境影响较小。

根据设计资料,本项目部分拟建杆塔位于山顶及山腰,不具备使用商品混凝土条件,施工所用混凝土采取现场人工拌合方式,施工所用河沙、石子、水泥等施工材料均外购,所采用的砂石料清洗均由供货方清洗完毕后再运输至塔基附近,现场不进行砂石料清洗。人工拌合混凝土过程中基本无生产废水产生,项目施工期间废水主要来自于工程施工期间混凝土养护,施工期间混凝土养护废水经过沉淀后回用于施工区域洒水抑尘,不外排,对周围环境影响较小。

本工程杆塔基础开挖采用人工钻孔开挖的方式,钻孔开挖可能会产生少量钻浆 废水,废水主要成分为 SS,施工期在塔基附近设置沉沙池,少量的施工废水经沉淀 处理后回用于施工区域洒水抑尘,不外排。

5.声环境影响分析

5.1 宏墙 220kV 变电站间隔扩建工程及电缆线路工程

5.1.1主要声源分析

宏墙220kV 变电站间隔扩建工程及电缆线路工程施工期主要噪声为土地平整、 变电站围墙拆除并新建、出线架构基础、电缆排管基础等开挖所产生的噪声以及运 输车辆行驶产生的噪声。噪声源设备主要有液压挖掘机、重型运输车、商砼搅拌车 等。

根据《环境噪声与振动控制工程技术导则》(HJ 2034-2013),并结合工程特点,变电站施工常见施工设备噪声源声压级见表4-2。

表4-2 变电站施工设备噪声源声压级(单位: dB(A))

序号	施工阶段 [©]	主要施工设备	声压级(距声源 5m) ^②
1	基础开挖	液压挖掘机	86
1	圣仙开7	重型运输车	86
		商砼搅拌车	88
2	土建施工	重型运输车	86
		振荡器	79
3	材料进场运输	重型运输车	86

注: ①设备安装阶段施工噪声均明显小于其他阶段,在此不单独预测;

5.1.2 噪声影响预测

施工机械设备一般露天作业,噪声经几何扩散衰减后到达预测点。主要施工设备与施工场界、周边声环境保护目标之间的距离一般都大于 2Hmax(Hmax 为声源的最大几何尺寸)。因此,工程施工期的施工设备可等效为点声源。按如下模式计算出主要施工机械噪声声级随距离衰减情况见表 4-3。

$$L_{p}(r) = L_{p}(r_{0}) - 20 \lg(\frac{r}{r_{0}})$$

式中: $L_{p}(r)$ — 预测点处声压级, dB(A);

 $L_{\mathbf{p}}(r_0)$ ——参考位置 r0 处的声压级 dB(A);

r——预测点距声源的距离(m);

r₀——参考位置距声源的距离(m)。

声压级叠加模式:

$$Lp(\stackrel{\bowtie}{l}) = 10 \lg \left(\sum_{i=1}^{N} 10^{L} p_{i} / 10 \right)$$

式中: Lp(总) _____复合声压级, dB(A);

 Lp_i _____ 背景声压级或各个噪声源的影响声压级,dB(A)。

②根据设计单位的意见,变电站施工所采用设备为中等规模,因此参考 HJ 2034-2013,选用适中的噪声源源强值。

表 4-3 单台施工机械设备噪声衰减距离(单位: m)

	dB (A)									
机械设备	55 (夜间 标准值)	60	65	70 (昼间 标准值)	75	80	86			
液压挖掘机	178	100	56	32	18	10	5			
重型运输车	178	100	56	32	18	10	5			
商砼搅拌车	225	126	71	40	22	12	6			
振荡器	79	45	25	14	8	4	2			

经咨询建设单位,本项目施工期夜间不施工,各项施工活动仅在昼间 (6:00~22:00)进行,由上表可以看出,商砼搅拌车的声源最大,在单台声源设备距 离厂界水平距离超过 40m 时,设备影响声压级才小于 70dB(A)。因此,在多台设备 同时施工时,宏墙 220kV 变电站间隔扩建工程及电缆线路工程施工场界处昼间噪声排放难以满足《建筑施工场界环境噪声排放标准》的要求。

根据现场调查,宏墙 220kV 变电站间隔扩建侧及电缆线路沿线评价范围内无声环境保护目标分布,项目施工期噪声不会产生施工扰民问题。

5.2 架空线路工程

5.2.1主要声源分析

根据工程分析,本项目架空线路工程施工期施工活动包括材料运输、原有杆塔拆除、新建杆塔基础施工、杆塔组立及导线架设等几个方面,施工期主要噪声源为基础开挖以及架线施工中各种机械设备的噪声以及拆除杆塔过程中的拆除设备与金属碰撞噪声。主要噪声源有柴油发电机、运输车、吊机、牵张机、绞磨机、电锤、无人机等。根据《环境噪声与振动控制工程技术导则》(HJ 2034-2013)及资料检索,施工期主要施工设备噪声源强调查清单见表4-4。

表4-4 施工期噪声源强调查清单

序	声源	声源	型号	ı	间相 置 ^② (:		声源源强	声源控制	运行	
号	名称	类型	1	X	Y Z 声压级/ dB(A)/5m		声压级/ dB(A)/5m	措施	时段	
1	柴油发 电机	固定 声源	未定	/	/	/	90	加强施工机械的保养		
2	运输车	移动声源	未定	/	/	/	80	加强运输车辆的保 养,合理规划运输车 辆行驶路线	6:00~12:00	
3	吊车	移动 声源	未定	/	/	/	65	加强施工机械的保养	14:00~22:00 夜间及午休	
4	牵张机	固定 声源	未定	/	/	/	65	加强施工机械的保养	期间不施工	
5	绞磨机	固定 声源	未定	/	/	/	78	加强施工机械的保养		
6	电锤	固定	未定	/	/	/	85	加强施工机械的保养		

		声源							
7	无人机	移动 声源	未定	/	/	/	65	加强施工机械的保养	

备注: ①施工设备型号需施工时由施工单位确定;

②施工时,机械设备可能出现在施工场地范围内任意位置,故空间相对位置未定。

5.2.2 噪声影响预测

经咨询建设单位,本工程夜间不施工。施工机械设备一般露天作业,噪声经几何扩散衰减后到达预测点。实际施工过程中,除运输车、吊车、无人机等移动设备外,其余主要施工设备与施工场界之间的距离一般都大于 2Hmax(Hmax 为声源的最大几何尺寸)。因此,除运输车、吊车、无人机等移动噪声源强外,本评价将其他固定声源施工机械等效为点声源进行预测。本次评价采用《环境影响评价技术导则 声环境》(HJ2.4-2021)中的点声源的几何发散衰减计算方法,考虑在不设置围挡及声屏障的情况下对本工程施工期所需固定声源施工设备同时集中在该处施工场界的最不利情况下的噪声贡献值和达标情况进行预测。

(3) 预测结果

经咨询建设单位,本项目夜间及午休期间不施工,在固定声源施工机械设备同时工作的最不利情况下,不同距离处的噪声预测值具体见表4-5。

表4-5 不同距离处的噪声预测值 单位: dB(A)

距离 (m)	5m	10m	20m	30m	50m	59m	100m	200m	330m
噪声预测值	91	85	79	76	71	70	65	59	55

从表 4-5 的预测结果可知,考虑夜间禁止施工、昼间所有固定声源施工机械同时使用时,在不设置围挡及声屏障的情况下,距离噪声源 59m 左右能达到建筑施工场界噪声限值。根据现场调查,拟建线路沿线声环境保护目标位于 3 类声功能区,其昼间噪声达标距离为 100m。

根据现场调查,本项目线路沿线声环境保护目标为重庆市博勇建筑工程有限公司项目部,为有效减少施工期对沿线声环境的影响,本环评要求线路施工时优选低噪声施工设备,减少高噪声机械设备的使用,高噪声设备尽量远离项目部,牵张场设置在远离项目部的平坦空旷处,同时要求线路工程产生环境噪声污染的施工作业只在昼间非午休时间进行,夜间禁止施工。因本项目施工量较小,施工时间较短,在采取以上措施后,本项目施工期对周围环境影响较小。

本项目在拆除杆塔过程中金属之间碰撞会产生一定噪声,具有间断性特点,因 本项目拆除塔基数量较小,塔基较分散,且拆除塔基距离重庆市博勇建筑工程有限 公司项目部较远,因此本项目拆除工程对周围环境影响较小。

6.固体废物

6.1 污染源分析

施工期固体废物主要为变电站出线间隔基础、电缆排管基础以及杆塔基础开挖产生的弃土弃渣,拆除宏墙220kV变电站部分围墙以及拆除部分塔基产生的建筑垃圾,拆除线路产生的杆塔、导线、绝缘子等材料,以及施工人员产生的生活垃圾。

6.2 环境影响分析

(1) 施工人员生活垃圾

根据类似工程,工程施工高峰期施工人数可达20人,按每人每天产生约2kg生活垃圾,每天共产生约40kg生活垃圾,施工人员产生的生活垃圾经分类收集后交由环卫部门定期清运。

(2) 弃土弃渣

根据《重庆渝湘铁路水江北牵引站220千伏外部供电工程水土保持方案报告表》,本项目施工期宏墙220kV变电站间隔扩建工程挖方量约3000m³,因本期征地区域地势较低,需进行填方处理,因此宏墙220kV变电站间隔扩建工程挖方全部就地回填,对周边环境产生的影响较小。

新建 220kV 宏水牵 I、II 线电缆排管及塔基挖方量共约 5800m³, 挖方拟全部进行回填,不产生弃方,其中电缆排管开挖余土全部回填于宏墙 220kV 变电站间隔扩建征地区域内,塔基开挖产生的基槽余土分别在各塔基占地范围内就地回填压实。

110kV 大宏线迁改工程塔基挖方量约200m³,施工剥离表土集中堆放,施工结束后回覆于施工区,用于植被恢复,塔基开挖产生的基槽余土分别在各塔基占地范围内就地回填压实,线路沿线不设弃渣点。

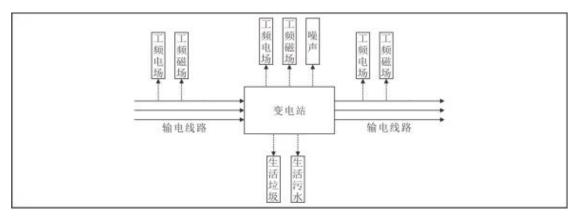
本工程杆塔基础开挖采用人工钻孔开挖的方式,钻孔开挖可能会产生少量的钻 渣,根据类似工程经验,施工过程中产生的少量钻渣采用压实法,就地进行压实回 填,对周边环境产生的影响较小。

(3) 拆除杆塔及导线

根据设计资料,本项目拆除原110kV 大宏线81#-85#段线路约1km,拆除3基杆塔(原82#、原83#、原84#),拆除的杆塔、废导线、废金具等均交由电力物资回收部门统一调配,对周边环境的影响较小。

(4) 建筑垃圾

根据设计资料,本期拟拆除宏墙220kV变电站西北侧部分围墙(拆除围墙长度


约63m),将产生约30m³建筑垃圾。本项目拟拆除原110kV 大宏线3基铁塔露出地面的混凝土基础,产生约1m³建筑垃圾,产生的建筑垃圾均交由有运输资质单位清运至建筑垃圾消纳场,不随意倾倒。

7.施工期环境影响小节

综上所述,项目施工期产生的环境影响是短暂的、可逆的,其影响也随着施工期的结束而消失,施工单位应严格按照有关规定采取环境保护措施,并加强监管,以使本项目施工对周围环境的不利影响降至最低。

1.运营期产污环节

本项目运营期产污环节示意图见图 4-6。

运营

期生

态环

境影 响分 析

图 4-6 运营期产污环节示意图

2.电磁环境影响分析

2.1 宏墙 220kV 变电站间隔扩建工程电磁环境影响评价

宏墙 220kV 变电站本期仅扩建 2 个 220kV 电缆出线间隔,扩建工程不新增主变压器,本次间隔扩建工程不会改变站内的主变、主母线等主要电气设备。增加的电气设备对变电站厂界外的工频电场、工频磁场基本上不构成增量影响,扩建工程完成后变电站区域电磁环境水平与变电站前期工程建成后的电磁环境水平相当。

通过景文 220kV 变电站类比监测结果,宏墙 220kV 变电站本期间隔扩建完成后,变电站间隔扩建侧厂界外的电场强度和工频磁感应强度仍满足相应的限值要求。

2.2 新建架空线路电磁环境影响评价

经预测,在新建 220kV 宏水牵 I 线最低导线对地高度为 19m 时;在新建 220kV 宏水牵 II 线最低导线对地高度为 14m 时;新建 110kV 架空线路在下相线导线对地高度为 11m 时,线下地面 1.5m 高处工频电场强度、工频磁感应强度均满足《电磁环境控制限值》(GB 8702-2014)规定的 4000V/m 和 100μT 标准要求,亦满足架空线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所电磁环境限值 10kV/m

标准要求。

2.3 新建电缆线路工程电磁环境影响评价

根据类比监测,本期电缆线路沿线工频电场强度及工频磁感应强度贡献值较低。 拟建电缆线路沿线受已建500kV 张竹二线、宏墙220kV 变电站及110kV 南中线等 线路影响,虽线路沿线现状电磁环境较背景值偏高,但通过类比,电缆线路工频电 场强度及工频磁感应强度贡献值较低,类比贡献值叠加现状值后,线路沿线工频电 场强度在(15~1858)V/m 之间(类比叠加值进位取整),工频磁感应强度在(2.14~ 3.92)μT 之间(类比叠加值保留两位小数),均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及100μT 的公众曝露控制限值。

2.4 线路沿线典型电磁环境保护目标预测分析

经预测,线路沿线现有最近环境保护目标的工频电场强度预测值在(140~1151) V/m 之间、工频磁感应强度预测值在(1.24~6.03) μ T 之间,均小于公众曝露控制限值 4000V/m 与 100 μ T 的标准要求。

2.5 线路交叉跨越处电磁环境影响分析

项目交叉跨越处无电磁环境保护目标分布,经预测,本项目建成投运后,线路沿线交叉跨越处工频电场强度预测值在(2084~3518.6)V/m之间,满足架空线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所电磁环境限值 10kV/m标准要求。

本项目电磁环境影响分析具体见《重庆渝湘铁路水江北牵引站 220 千伏外部供 电工程电磁环境影响评价专题》。

3.声环境影响分析

3.1 新建 220kV 架空线路

根据《环境影响评价技术导则 输变电》(HJ24-2020),本项目架空输电线路 声环境影响采用类比评价。

3.1.1类比分析思路

- (1)根据设计资料,新建220kV 宏水牵 I、II 线为两条220kV 单回架空线路,两条220kV 单回架空线路导线排列方式分为两种,分别为三角排列和垂直排列,其中在水江北牵引站进线侧采用垂直排列,其余部分均采用了三角排列,本次评价对该两种导线排列形式分别进行类比分析。
 - (2) 本次评价对新建220kV 单回架空线路垂直排列段线路从最不利角度选取双

回线路进行类比分析。

3.1.2 新建 220kV 单回架空线路 (三角排列) 噪声类比分析

3.1.2.1类比对象选取

本评价选择"220kV 苏城北线"作为本项目新建220kV 单回架空线路(三角排列)的类比对象。新建输电线路与类比线路的可比性分析见表4-6。

表 4-6 本项目新建 220kV 架空线路与类比线路对比情况一览表

话口	2201 X7 # 14:41,44	新建 220kV 单回架	空线路(三角排列)	+u (n) k4-	
项目	220kV 苏城北线	220kV 宏水牵 I 线	220kV 宏水牵 II 线	相似性	
地理位置	重庆市江津区	重庆市	南川区	/	
电压等级	220kV	220kV	220kV	一致	
架设方式	单回	单回	单回	一致	
导线排列方 式	三角排列	三角排列	三角排列	一致	
导线型号	LGJ-240/30	JL3/G1A-400/35	JL3/G1A-400/35	本项目优 ^②	
导线分裂数	单导线	单导线	单导线	一致	
线高	断面监测高度 9m	最低约 19m 最低约 14m		本项目优 ^①	
气候环境	亚热带季风性湿润 气候,年平均温 度 17℃左右,年平均 相对湿度 70%左右		亚热带季风性湿润气候,年平均温度 15℃ 左右,年平均相对湿度 80%左右		
声环境功能 区	监测断面处为1类	2 类、3 类	2 类、3 类	/	
运行工况	运行电压已达到设 计额定电压等级,线 路运行正常	/	/	/	

备注: ①导线对地高度根据设计单位提供;

② 根据 [1] 张海兵,吴海涛,胡琴等.架空输电线路可听噪声问题综述 [J].高压电器,2022,58(05):1-6.DOI:10.13296/j.1001-1609.hva.2022.05.001."分裂数、子导线直径的增加均能有效地降低导线表面电场强度,从而减小可听噪声";

根据 [1]谭闻,张小武.输电线路可听噪声研究综述[J].高压电器,2009,45(03):109-112."适当增大导线截面以减小导线表面场强,降低可听噪声水平",因此本项目导线类型优于类比线路。

根据上表可知,本项目新建 220kV 单回架空线路(三角排列)与类比线路具有相同的电压等级、架设方式、导线排列方式、导线分裂数,在沿线气候环境方面相似,且本项目新建 220kV 单回架空线路(三角排列)最低导线对地高度相比较类比线路断面监测高度更高,导线截面积相比较类比线路导线截面积更大,因此,两条线路具有很好的可比性,类比线路运行时产生的可听噪声能够反映本项目运行时对周围环境的影响。

3.1.2.2监测方法及仪器

监测方法: 《声环境质量标准》(GB3096-2008)。

监测所用仪器具体情况见表4-7。

表 4-7 监测所使用	心哭	Ī
-------------	----	---

仪器名称 仪器型号		仪器编号	计量检定/校准证书编号	有效期至	
声级计	AWA5688	00309428	2022122603710	2024年1月3日	
声校准器	AWA6221B	2008794	2022080203926	2023年8月8日	

3.1.2.3监测布点

在220kV 苏城北线4#~5#塔间设置噪声衰减监测断面1处,线高9m。线路监测以线路边导线对地投影为测试原点,沿垂直于线路方向进行,测点间距为5m,依次监测至边导线对地投影外40m 处,点位设置在距地面1.2m 高处。

3.1.2.4监测时间及监测条件

2023年4月19日~4月20日,重庆泓天环境监测有限公司对220kV 苏城北线4#-5# 塔之间线路进行了噪声断面监测,监测报告编号为:渝泓环(监)[2023]217 号,类比线路监测时间及监测条件见表4-8。

表 4-8 220kV 苏城北线运行负荷表

(2023年4月19日16时50分~2023年4月20日05时59分)

电压	最低	最高	最低	最高	最低	最高	最低	最高
等级与名	有功	有功	无功	无功	电压	电压	电流	电流
称	MW	MW	MVar	MVar	kV	kV	A	A
220kV 苏 城北线	4.0444	30.8767	-3.6481	-16.0533	229.0078	234.9788	21.0879	76.4639

3.1.2.5类比监测结果与评价

类比线路噪声监测断面类比监测结果见表 4-9。

表 4-9 线路噪声类比监测结果

点位描述		监测结果	d(dB(A))	执行标准	(dB(A))	夕沪
	兴江细灰		夜间	昼间	夜间	备注
	三角排列中心边导线(即铁塔中 心线)地面投影处	40	39	55	45	
	三角排列中心边导线(即铁塔中 心线)地面投影外 5m	39	37	55	45	
	三角排列中心边导线(即铁塔中 心线)地面投影外 10m	38	37	55	45	
220kV	三角排列中心边导线(即铁塔中 心线)地面投影外 15m	38	37	55	45	
苏城北 线 4#-5#	三角排列中心边导线(即铁塔中 心线)地面投影外 20m	38	37	55	45	村庄
塔之间 (线高	三角排列中心边导线(即铁塔中 心线)地面投影外 25m	38	37	55	45	区域
9m)	三角排列中心边导线(即铁塔中 心线)地面投影外 30m	38	37	55	45	
	三角排列中心边导线(即铁塔中 心线)地面投影外 35m	38	37	55	45	
	三角排列中心边导线(即铁塔中 心线)地面投影外 40m	38	37	55	45	
	三角排列中心边导线(即铁塔中 心线)地面投影外 51m	38	37	55	45	

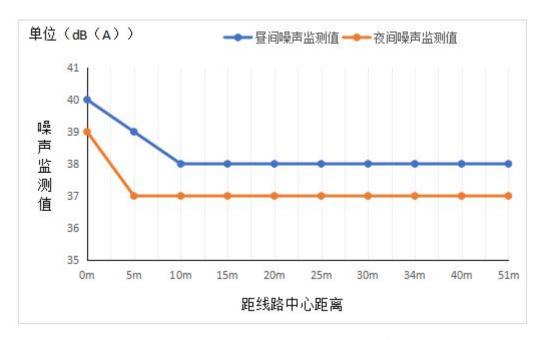


图 4-7 220kV 苏城北线 4#-5#塔之间噪声衰减断面图

220kV 苏城北线 4#-5#塔段线路断面噪声昼间监测值在(38~40)dB(A)之间,夜间监测值在(37~39)dB(A)之间,满足《声环境质量标准》(GB3096-2008)中 1 类标准限值要求。

根据类比监测结果,线路噪声监测衰减断面位于村庄区域,输电线路昼、夜噪声变化幅度不大,噪声水平随距离的增加而减小的趋势不明显,说明是主要受背景噪声影响,输电线路的运行噪声对周围环境噪声的贡献很小,对当地环境噪声水平不会有明显的改变。因此,可以预测本项目输电线路投运后产生的噪声对周围环境的影响程度也很小,能够满足相关标准限值要求。

3.1.2.6声环境保护目标预测结果分析

根据现场调查,本项目新建 220kV 单回架空线路(垂直排列)沿线无声环境保护目标分布。

3.1.3 新建 220kV 单回架空线路(垂直排列)噪声类比分析

3.1.3.1类比对象选取

本评价选择"220kV 大搬一、二线"作为本项目新建220kV 单回架空线路(垂直排列)的类比对象。本项目新建220kV 单回架空线路(垂直排列)与类比线路的可比性分析见表4-10。

表 4-10 本项目新建 220kV 单回架空线路(垂直排列)与类比线路对比情况一览表

	220kV 大搬一、二线	新建 220kV 单同型	!空线路(垂直排列)		
项目	(类比线路)		220kV 宏水牵 I 线 220kV 宏水牵 II 线		
blam A. III	2 1 2 11			,	
地理位置	四川省南充市	里 大巾	京南川区	/	
电压等级	220kV	220kV	220kV	一致	
架设方式	同塔双回	单边挂线	单边挂线	本项目优	
导线排列 方式	垂直排列	垂直排列	垂直排列	一致	
导线型号	JL3/G1A-400/35	JL3/G1A-400/35	JL3/G1A-400/35	一致	
导线分裂 数	单导线	单导线	单导线	一致	
线高	断面监测高度 8.5m	最低约 19m	最低约 14m	本项目优 ^①	
气候环境	属亚热带季风性湿润气候, 年平均气温 17.1℃左右	亚热带季风性湿润气候,年平均温度 15℃左右		相似	
声环境功 能区	监测断面处为1类	2 类、3 类、4b 类	2 类、3 类、4b 类	/	
运行工况	运行电压已达到设计额定 电压等级,线路运行正常	/	/	/	

备注: ①根据设计单位提供的平断面图, 导线对地高度根据设计单位提供;

根据上表可知,本项目新建 220kV 单回架空线路(垂直排列)与类比线路具有相同的电压等级、导线排列方式、导线型号以及导线分裂数,在沿线气候环境方面相似,且本项目新建 220kV 单回架空线路(垂直排列)在架设方式以及导线高度方面优于类比线路,因此,两条线路具有较好的可比性,类比线路运行时产生的可听噪声能够反映本项目运行时对周围环境的影响。

3.1.3.2监测方法及仪器

监测方法: 《声环境质量标准》(GB3096-2008)。

监测所用仪器具体情况见表4-11。

表 4-11 监测所使用仪器

类比线路名称	名称	型号/规格	编号	有效期至
220kV 大搬一。一线	多功能声级计	AWA6228+	10336244	2023.1.20
220kV 大搬一、二线	声校准器	AWA6021A	1020272	2023.1.16

3.1.3.3监测布点

在220kV 大搬一、二线 N64~N65塔间设置1处监测断面,线高8.5m。线路监测以线路中心线投影点为测试原点,沿垂直于线路方向进行,测点间距为5m,测至距线路边导线地面投影外50m 处止。

3.1.3.4监测时间及监测条件

类比线路监测时间及监测条件见表4-12、表4-13。

表 4-12 类比线路监测时间及监测环境条件

类比线路名称	检测日期	天气	温度℃	湿度%
220kV 大搬一、二线	2022.3.1	晴	17.5~19.8	39.5~40.7

表 4-13 类比线路监测期间运行工况

名称	运行工况(最大值)			
石 柳	电压(kV)	电流(A)	有功功率(MW)	无功功率(MVar)
220kV 大搬一线	207.6	93.41	61.24	22.24
220kV 大搬二线	204.9	94.00	60.15	20.29

3.1.3.5类比监测结果与评价

类比线路噪声监测断面类比监测结果见表 4-14。

表 4-14 类比监测结果

			₹(dB(A))	执行标准	(dB(A))	备注
	从 位	昼间	夜间	昼间	夜间	一 金 社
	线路中心地面投影处	44	39	55	45	
	5m	43	38	55	45	
	10m	42	39	55	45	
220kV 大	15m	43	37	55	45	
搬一、二线	20m	43	38	55	45	村庄
N64~N65	25m	43	38	55	45	村庄 区域
塔间(线高	30m	43	37	55	45	
8.5m)	35m	42	37	55	45	
	40m	42	38	55	45	
	45m	43	39	55	45	
	50m	42	38	55	45	

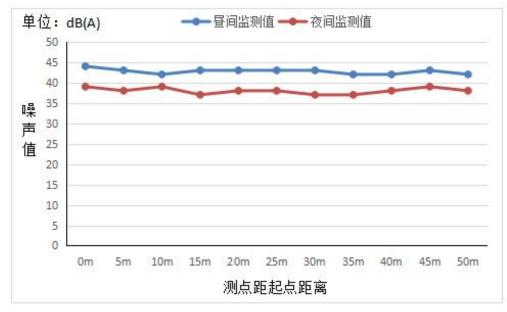


图 4-8 线路噪声衰减断面图

220kV 大搬一、二线 N64~N65 塔段线路断面噪声昼间监测值在(42~44) dB(A) 之间, 夜间监测值在(37~39) dB(A)之间, 满足《声环境质量标准》(GB3096-2008)

中1类标准限值要求。

根据类比监测结果,线路噪声监测衰减断面位于村庄区域,输电线路昼、夜噪声变化幅度不大,噪声水平随距离的增加而减小的趋势不明显,说明是主要受背景噪声影响,输电线路的运行噪声对周围环境噪声的贡献很小,基本不构成增量贡献,对当地环境噪声水平不会有明显的改变。因此,可以预测本项目输电线路投运后产生的噪声对周围环境的影响程度也很小,能够满足相关标准限值要求。

3.1.3.6声环境保护目标预测结果分析

根据现场调查,本项目新建 220kV 单回架空线路(垂直排列)沿线无声环境保护目标分布。

3.2 新建 220kV 单回电缆线路

根据《环境影响评价技术导则 输变电》(HJ24-2020 号)中 4.7.3 声环境影响评价范围: 地下电缆可不进行声环境影响评价。

3.3 110kV 大宏线迁改工程噪声类比分析

3.3.1类比分析思路

本项目110kV 大宏线迁改线路采用双回塔单边挂线的架设方式,本次评价110kV 大宏线迁改线路(双回塔单边挂线)从最不利角度选取双回线路进行类比分析。

3.3.2 类比对象选取

本次环评选取已经正常运行的安徽省阜阳市的110kV 孙龙513线/514线双回线路作为本项目线路的类比对象。110kV 大宏线迁改线路与类比线路的可比性分析见表4-15。

表 4-15 本项目 110kV 大宏线迁改线路与类比线路对比情况一览表

线路名称	110kV 孙龙 513 线/514 线双回	110kV 大宏线迁改线路	相似性
线路 (类比线路)		(本项目)	10 10 11.
地理位置	安徽省阜阳市	重庆市南川区	/
电压等级	110kV	110kV	一致
架设方式	双回	单回(双回塔单边挂线)	类似
导线排列方式	同塔双回垂直排列	双回塔单边挂线垂直排列	类似
导线型号	LGJ-300/25	JL3/G1A-300/25	导线截面积一致
导线分裂形式	单导线	单导线	一致
导线高度	断面监测高度 14m	设计导线最低对地高度为	 类似
		11m	天协
线路沿线气候	暖温带半湿润季风气候,多年	亚热带湿润季风气候,年	 类似
环境	平均气温 12~22℃	平均温度 16.6℃左右	天似
声环境功能区	监测断面处为1类	2 类、3 类	/
运行工况	运行电压已达到设计额定电	/	,
超11 土机	压等级,线路运行正常	/	/
7. V. O H 45. V			

备注: ①导线对地高度根据设计单位提供。

根据上表可知,本项目110kV 大宏线迁改线路与类比线路具有相同的电压等级和导线分裂数,且在导线截面积方面一致。此外,本项目110kV 大宏线迁改线路与类比线路在架设方式、导线排列方式、导线型号、导线高度以及沿线气候环境方面相似。因此,两条线路具有较好的可比性,类比线路运行时产生的可听噪声能够反映本项目运行时对周围环境的影响。

3.3.3 监测方法及仪器

按《声环境质量标准》(GB3096-2008)的监测方法进行监测,监测所用仪器具体情况见表 4-16。

表 4-16 监测仪器情况一览表

仪器设备	有效期起止时间	检定证书编号	检定单位
AWA6228 型声级计	2019.6.17~2020.6.16	F11-20192386	山东省计量科学研究院

3.3.4 监测布点

在 110kV 孙龙 513 线/514 线双回线路 15#~16#线下设置一处监测断面,以导线 弧垂最大处(线高 14m)线路中心的地面投影点为监测原点,沿垂直于线路方向监测距地面 1.2m 高处,测点间距为 5m,依次监测至 35m 处。

3.3.5 监测时间及监测条件

110kV 孙龙513线/514线双回线路监测条件见表4-17。

表 4-17 110kV 孙龙 513 线/514 线双回线路监测条件

类比线路名称	监测日期	天气	环境温度 (℃)	相对湿度 RH(%)
110kV 孙龙 513 线/514 线双回线路	2020年5月26日	晴	12~27	56~68

3.3.6 类比监测结果与评价

监测结果见表 4-18。

表 4-18 110kV 孙龙 513 线/514 线噪声断面监测结果

序号	监测点位		昼间监测值	夜间监测值
N1		0m (线路中心)	42.1	40.0
N2	110kV 孙龙 513 线/514 线	5m	41.0	39.6
N3	15#~16#杆塔间(同塔双回架	10m	41.3	39.3
N4	设,导线对地高度为 14m,周	15m	41.1	39.6
N5	边环境为农田)。距两杆塔中	20m	41.1	38.5
N6	央连线弧垂最大处线路中心	25m	40.9	39.1
N7	对地投影	30m	40.4	39.0
N8		35m	40.7	39.7

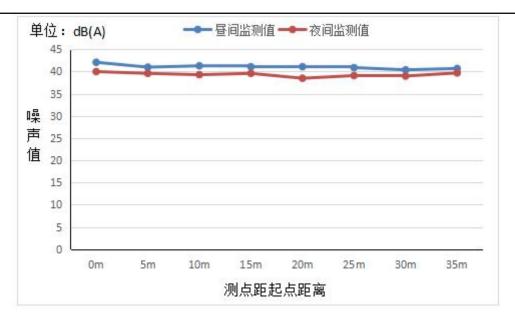


图 4-9 110kV 孙龙 513 线/514 线噪声衰减断面图

由表 4-18、图 4-9 可知,在监测工况下,110kV 孙龙 513 线/514 线监测断面昼间噪声最大值为 42.1dB(A),夜间噪声最大值为 38.5dB(A),均能够满足《声环境质量标准》(GB3096-2008)中 1 类标准要求。

根据类比监测结果,线路噪声监测衰减断面昼、夜噪声变化幅度不大,噪声水平随距离的增加而减小的趋势不明显,说明是主要受背景噪声影响,输电线路的运行噪声对周围环境噪声的贡献很小,基本不构成增量贡献,对当地环境噪声水平不会有明显的改变。因此,可以预测本项目 110kV 大宏线迁改线路投运后产生的噪声对周围环境的影响程度也很小,能够满足相关标准限值要求。

3.3.7 声环境保护目标预测结果分析

根据现场调查,本项目110kV 大宏线迁改线路沿线无声环境保护目标分布。

3.4 宏墙 220kV 变电站间隔扩建工程声环境影响评价

根据设计资料,本项目宏墙 220kV 变电站本期扩建 220kV 出线间隔 2 个,不新增主变压器等主要声源设备,扩建完成后变电站区域及厂界噪声能够维持前期工程水平,不会增加新的影响。

根据现状监测结果,宏墙 220kV 变电站西北侧厂界噪声昼间监测值为 50dB(A),夜间监测值为 49dB(A),满足《工业企业厂界环境噪声排放标准》(GB1234-2008)"3 类"排放限值要求。根据现场调查,宏墙 220kV 变电站本期间隔扩建侧评价范围内无声环境保护目标分布。

综合上述,可以预测宏墙220kV变电站本期扩建完成后,变电站间隔扩建侧厂界噪声仍能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类排放限值

要求。

选选环合性析址线境理分析

4.地表水、大气及固体废物环境影响分析

宏墙 220kV 变电站间隔扩建工程不增加站内劳动定员,不新增固体废物及废水产生量,本期依托原有工程的污水处理方式及生活垃圾处理方式。变电站运行期无废气产生。

输电线路运行期间无废水、废气及固体废物产生。

1.与《输变电建设项目环境保护技术要求》(HJ1113-2020)符合性分析

项目从选址、设计等方面均提出落实了《输变电建设项目环境保护技术要求》 (HJ1113-2020) 相关要求,符合性分析见下表 4-19。

表 4-19 项目与《输变电建设项目环境保护技术要求》(HJ1113-2020)符合性

类型	涉及变电工程的要求	本项目情况	是否 合理
	工程选址选线应符合规划环境影响评价文件的要求。	本项目符合《重庆市南川工业园区水江组团控制性详细规划环境影响报告书》及审查意见的要求,本项目已取得了重庆市南川区规划和自然资源局下发的《建设项目用地预审与选址意见书》(用字第500119202300103号)	合理
选址	输变电建设项目选址选线应符合生态保护红线管控要求,避让自然保护区、饮用水水源保护区等环境敏感区。确实因自然条件等因素限制无法避让自然保护区实验区、饮用水水源二级保护区等环境敏感区的输电线路,应在满足相关法律法规及管理要求的前提下对线路方案进行唯一性论证,并采取无害化方式通过。	本项目不涉及生态保护红线,不 涉及自然保护区、饮用水水源保 护区等环境敏感区	合理
_	同一走廊内的多回输电线路,宜采取同塔多 回架设、并行架设等形式,减少新开辟走廊, 优化线路走廊间距,降低环境影响。	为确保渝湘高速铁路供电可靠性,本项目需新建两条 220kV 单回线路,根据现场调查,拟建两条单回架空线路避开不良地质后基本并行走线	合理
	原则上避免在 0 类声环境功能区建设变电工程。	经核实,本项目评价范围内无 0 类声环境功能区	合理
	输电线路宜避让集中林区,以减少林木砍伐, 保护生态环境。	本项目线路沿线无集中林区	合理
	进入自然保护区的输电线路,应按照 HJ 19 的要求开展生态现状调查,避让保护对象的 集中分布区。	本项目不涉及自然保护区	合理

综上,本项目符合《输变电建设项目环境保护技术要求》(HJ1113-2020)提出的相关要求。

2.本项目所在地主管部门意见

本项目已征得南川区林业局、南川区生态环境局、重庆南川工业园区管理委员 会等相关部门同意意见,详见附件5。 3.选线合理性分析 本项目线路沿线无生态保护红线、自然保护区、风景名胜区等生态敏感区,无 饮用水水源保护地等水环境保护目标分布。线路按照《输变电建设项目环境保护技 术要求》进行了合理选线,且本项目已取得重庆市南川区规划和自然资源局下发的 《建设项目用地预审与选址意见书》(用字第500119202300103号)。因此,本项 目选址选线具有环境合理性。

五、主要生态环境保护措施

1.生态环境保护措施

为减少本工程对生态环境的影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施:

2.1 避让措施:

- ①下一阶段设计中,进一步优化铁塔设计和线路路径,减少永久占地和对林木的砍伐量; 塔基设计定位时,尽量避开林地,减少位于林地内的塔基数量。
- ②合理规划施工临时道路、牵张场等临时场地,宏墙变电站间隔扩建工程及电缆线路工程利用水江大道等现有道路,部分位于山顶及山腰杆塔利用山区防火林带、邻近线路检修道路等,合理划定施工范围和人员、车辆的行走路线,避免对施工范围之外区域的动植物造成碾压和破坏。

2.2 减缓措施:

- ①严格控制宏墙变电站间隔扩建施工占地,合理安排施工工序和施工场地,将 项目临时占地合理安排在征地范围内。
- ②线路根据地形条件采用全方位高低腿铁塔,基础开挖时选用影响较小开挖方式,尽量少占土地,减少土石方开挖量及水土流失,保护生态环境;基础开挖临时堆土应采用临时拦挡措施,用苫布覆盖,回填多余土石方选择合适地点堆放,并采取措施进行防护。
- ③塔基施工占用林地时,施工前应进行表土剥离,将表土单独堆存并做好覆盖、 拦挡等防护措施,施工结束后用于项目区植被恢复或耕作区域表层覆土。
- ④严格控制塔基周围的材料堆场范围,尽量在塔基占地范围内进行施工活动。 牵张场选址应尽量避让植被密集区,尽量选择线路沿线空地布置,减少植被破坏, 并可采用钢板铺垫,减少倾轧。
 - ⑤施工临时道路应尽可能利用园区内现有道路以及林区小路等现有道路。
- ⑥对可能出现较大汇水面且土层较厚的塔位要求开挖排水沟,并顺接入原地形自然排水系统;位于斜坡的塔基表面应做成斜面,恢复自然排水,排水沟均采用浆砌块石排水沟。
- ⑦经过植被较好的区域时应采用无人机放线等施工架线工艺,施工现场使用带油料的机械器具,应铺设彩条布防止油料跑、冒、滴、漏,防止对土壤和水体造成污染。

⑧施工中尽量控制声源,选取低噪声设备,并合理安排强噪声施工行为的时间, 尽量减少施工噪声对野生动物的干扰。

2.3 恢复与补偿措施:

- ①施工结束后宏墙变电站间隔扩建侧及电缆线路沿线及时进行绿化或植被恢复,塔基临时占地处应及时进行清理、松土、覆盖表层土,除土地条件较好的临时占地区域植被恢复尽可能利用植被自然更新,对确需进入人工播撒草籽进行植被恢复的区域,选择当地的乡土植物进行植被恢复,严禁引入外来物种;
- ②杆塔拆除后,对塔基基础地上部分进行拆除,地下部分采取保留,并对塔基基础根据周边用地性质进行覆土恢复耕作或生态恢复。

2.4 管理措施:

- ①施工前,施工单位应做好施工期环境管理与教育培训、印发环境保护手册,组织专业人员对施工人员进行环保宣传教育,施工期严格施工红线,严格行为规范,进行必要的管理监督。
- ②在人员活动较多和较集中的区域,如生产区域、项目部附近,粘贴和设置环境保护方面的警示牌,提醒人们依法保护自然环境。

2.大气环境保护措施

为减少本工程对大气环境的影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施:

2.1 设计阶段

针对施工任务和施工场地环境状况,制定合理的施工计划,缩短施工周期,减少施工现场的作业面,减轻施工扬尘对环境的影响。

2.2 施工期

- ①施工运输车辆应采用密封、遮盖等防尘措施;
- ②对施工道路和施工现场定时洒水、喷淋,经常清洗运输车辆,避免尘土飞扬;
- ③宏墙变电站间隔扩建基础、电缆排管基础及线路塔基基础开挖时,对临时土方进行遮盖,施工完毕后及时进行回填压实;
- ④施工过程中,建设单位应当对裸露地面进行覆盖;暂时不能开工的建设用地超过三个月的,应当进行绿化、铺装或者遮盖:
 - ⑤施工现场禁止将包装物、可燃垃圾等固体废弃物就地焚烧。

3.声环境保护措施

为减少本工程施工期声环境影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施:

3.1 设计阶段:

在设备选型时选用符合国家噪声标准的低噪声施工设备。

3.2 施工阶段:

- ①选用符合国家噪声标准的低噪声施工设备,优选低噪声施工作业方式,严禁进行爆破作业:
- ②施工时合理布置施工场地,宏墙变电站间隔扩建工程及电缆线路沿线施工场 地设置施工围挡:
- ③避免夜间施工,如因工艺特殊情况要求,需在夜间施工而产生环境噪声污染时,应按《中华人民共和国环境噪声污染防治法》的规定,取得相关主管部门的审批,并在施工区域附近进行公告;
 - ④加强施工机械和运输车辆的保养,减小机械故障产生的噪声。

4.电磁环境保护措施

为减少本工程电磁环境影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施:

4.1 设计阶段:

- ①架空线路导线对地距离需满足现有设计高度,并严格按照《110kV~750kV架空输电线路设计规范》(GB50545-2010)和设计高度进行施工;
- ②本项目新建架空线路与沿线环境保护目标之间的距离不应小于本评价提出的电磁达标距离,即在不考虑风偏的情况下,在现有设计高度前提下,新建 220kV 单回架空线路(三角排列)段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 5m,或与下相导线线下垂直距离至少为 5m (满足二者条件之一即可);新建 220kV 单回架空线路(导线垂直)并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 6m,或与下相导线线下垂直距离至少为 5m (满足二者条件之一即可)。新建 110kV 架空线路需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 3m,或与下相导线线下垂直距离至少为 3m (满足二者条件之一即可);
- ③输电线路穿越非居民区时,在工频电场强度大于 4000V/m 且小于 10kV/m 的耕地、园地等公众容易到达的场所区域内设置警示和防护指示标志。

4.2 施工阶段:

电缆线路段适当增加埋深。

5.水环境保护措施

为减少本工程对地表水环境的影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施:

5.1 设计阶段

- ①变电站间隔基础、电缆排管基础及部分位于水江大道附近杆塔基础采用商品混凝土,部分拟建杆塔位于山顶及山腰采用散装水泥:
- ②线路塔基施工所用河沙、石子、水泥等施工材料均外购,所采用的沙石料清洗均由供货方清洗完毕后再运输至塔基附近,现场不进行沙石料清洗。

5.2 施工期

- ①施工人员就近租用周边民房,产生的生活污水纳入当地生活污水处理系统;
- ②施工期在施工场地适当位置设置沉沙池,少量混凝土养护废水及钻浆废水等 经沉淀后,用于场地洒水或喷淋,不外排。

6.固体废物环境保护措施

为减少本工程固体废物对周边环境的影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施:

6.1 设计阶段

尽可能减少开挖面积和开挖量。

6.2 施工期

- ①施工人员租住当地民房,产生的生活垃圾纳入当地生活垃圾收集处理系统:
- ②工程临时开挖土石方临时堆砌时应尽量选择周边空地,宏墙 220kV 变电站间隔扩建工程及电缆排管挖方全部回填于宏墙 220kV 变电站征地区域内,架空线路基础开挖产生的余土及少量钻渣拟在塔基周围低洼处进行回填压实,工程沿线不设弃渣场;
- ③工程拆除的杆塔、导线、绝缘子、金具等均交由电力物资回收部门统一调配, 不随意倾倒;
- ④工程拆除的少量杆塔基础和拆除的宏墙 220kV 变电站部分围墙产生的建筑垃圾交由有运输资质单位清运至建筑垃圾消纳场,不随意倾倒;

⑤施工过程中产生的施工废物料应分类集中堆放,尽可能回收利用,不能回收利用的及时清运交由相关部门进行处理。

7.措施的责任主体及实施效果

本项目施工期采取的生态环境保护措施和大气、地表水、电磁、噪声、固废污染防治措施的责任主体为施工单位,建设单位具体负责监督,确保措施有效落实; 经分析,以上措施具有技术可行性、经济合理性、运行稳定性、生态保护的可达性,在认真落实各项污染防治措施后,本项目施工期对生态、大气、地表水、声环境影响较小,固体废弃物能妥善处理,对周围环境影响较小。

为降低项目运行期对周边环境的影响,本次评价通过环境影响分析并结合《输变电建设项目环境保护技术要求》(HJ1113-2020)中相关要求提出以下环境保护措施。

1.生态环境保护措施

加强对宏墙 220kV 变电站间隔扩建侧、电缆线路及架空线路沿线巡视及管理,加强对宏墙 220kV 变电站间隔扩建侧、电缆线路沿线及塔基周边生态的管护。

2.电磁环境保护措施

①加强环境管理,定期进行环境监测工作,确保项目周边电磁环境小于《电磁环境控制限值》(GB 8702-2014)中的公众曝露控制限值。

运营期 生态环 境保护 措施

②输电线路穿越非居民区时,在工频电场强度大于 4000V/m 且小于 10kV/m 的 耕地、园地等公众容易到达的场所区域内设置警示和防护指示标志。

3.声环境保护措施

加强巡查和检查,定期开展环境监测,确保线路沿线声环境质量满足相应 区域标准要求,并及时解决公众合理的环境保护诉求。

4.措施的责任主体及实施效果

本项目运营期采取的电磁、噪声及生态环境保护措施的责任主体为建设单位,建设单位应严格依照相关要求确保措施有效落实;经分析,以上措施具有技术可行性、经济合理性、运行稳定性、生态保护的可达性,在认真落实各项污染防治措施后,本项目运营期对生态环境影响较小,电磁及声环境影响能满足标准要求。

1.环境保护管理与监控计划

其他

1.1 环境保护管理机构

本项目的环境保护主体责任单位是国网重庆市电力公司建设分公司,其主要职责 是:

- (1) 贯彻执行国家、重庆市及所在辖区内各项环境保护方针、政策和法规;
- (2)制定本项目施工中的环境保护计划,负责工程施工过程中各项环境保护措施实施的监督和日常管理;
 - (3) 组织制定污染事故处理计划,并对事故进行调查处理;
 - (4) 收集、整理、推广和实施工程建设中各项环境保护的先进工作经验和技术;
- (5)组织和开展对施工人员进行施工活动中应遵循的环保法规、知识的培训, 提高全体员工文明施工的认识;
- (6)负责日常施工活动中的环境监理工作,做好工程用地区域的环境特征调查,对于环境保护目标要做到心中有数;
 - (7) 做好施工中各种环境问题的收集、记录、建档和处理工作;
 - (8) 监督施工单位落实施工后的生态恢复和补偿、环保措施等。

1.2 施工期环境管理

根据《中华人民共和国环境保护法》和《建设项目环境保护管理条例》,建设单位必须把环境保护工作纳入计划,建立环境保护责任制度,采取有效措施,防治环境破坏。

- (1)施工招标中应对投标单位提出施工期间的环保要求,如废污水处理、防尘 降噪、固废处理、生态保护等情况均应按设计文件和环评要求执行。
 - (2) 建设单位施工合同应涵盖环境保护设施建设内容并配置相应资金情况。
- (3)监督施工单位,使设计、施工过程的各项环境保护措施与主体工程同步实施。
- (4) 在施工过程中要根据建设进度检查本项目实际建设规模、地点或者防治污染、防止生态破坏的措施与环评文件、批复文件或环境保护设施设计要求的一致性,发生变动的,建设单位应在变动前开展环境影响分析情况,重大变动的需及时重新报批环评文件。
- (5)提高管理人员和施工人员的环保意识,要求各施工单位根据制定的环保培训和宣传计划,分批次、分阶段地对职工进行环保教育。

1.3 环境保护设施竣工验收

根据《建设项目环境保护管理条例》,本项目的建设应执行污染治理设施与主

体工程同时设计、同时施工、同时投产使用的"三同时"制度。本建设项目正式投产运营前,建设单位应组织竣工环境保护验收,"建设项目竣工环境保护验收调查报告表"主要内容应包括:

- (1) 实际工程内容及变动情况。
- (2) 环境保护目标基本情况及变动情况
- (3) 环境影响报告表及批复提出的环保措施及设施落实情况。
- (4) 环境质量和环境监测因子达标情况。
- (5) 环境管理与监测计划落实情况。
- (6) 环境保护投资落实情况。

1.4 运营期环境管理

在项目运行期,由国网重庆市电力公司建设分公司负责运营管理,全面负责项目运行期的各项环境保护工作。运营主管单位宜设环境管理部门,配备相应专业的管理人员。环保管理人员应在各自的岗位责任制中明确所负的环保责任,其主要工作内容如下:

- (1) 制定和实施各项环境管理计划。
- (2)组织和落实项目运行期的环境监测、监督工作,委托有资质的单位承担本工程的环境监测工作。
 - (3) 建立环境管理和环境监测技术文件。
- (4)检查各环保设施运行情况,及时处理出现的问题,保证环保设施的正常运行。
- (5)不定期地巡查线路各段,特别是环境保护对象,保护生态环境不被破坏,保证生态环境与项目运行相协调。
- (6)针对线路附近由静电引起的电场刺激等实际影响,建设单位或负责运行的单位应在线路附近设置警示标志,并建立该类影响的应对机制,如及时采取塔基接地等防静电措施。
- (7)参照《企业事业单位环境信息公开办法》、《建设项目环境影响评价信息 公开机制方案》等要求,及时公开环境信息。

2.环境监测计划

输变电建设项目的主要环境影响评价因子为噪声、电磁、地表水及生态环境; 根据《排污单位自行监测技术指南总则》(HJ819-2017)及本项目的环境影响特点,制 定监测计划;监测其施工期和运行期环境要素及评价因子的动态变化;本项目不涉及污水排放,电磁环境与声环境监测工作可委托具有相应资质的单位完成,生态环境主要以现场调查为主。

表 5-1 营运期环境监测计划

监测项 目	监测点位	监测频次及时间	监测方法	执行标准	实施 机构
工频电 场、工 频磁场	220kV 宏墙变电站出线 间隔扩建侧厂界、评价 范围内典型环境保护目 标、有环境问题投诉的 环境保护目标及线路电 磁断面监测(有条件时)	环境保护设施调试 期1次;投诉纠纷 时加强监测	《交流输变电工 程电磁环境监测 方法(试行)》 (HJ 681-2013) 等监测技术规 范、方法	《电磁环 境控制限 值》 (GB870 2-2014)	受托有测委的监资
噪声	220kV 宏墙变电站出线 间隔扩建侧厂界、评价 范围内典型环境保护目 标及有环境问题投诉的 环境保护目标	环境保护设施调试 期1次;运行期夏 季负荷高峰等特殊 情况监测1次;投 诉纠纷时加强监测	《声环境质量 (GB3096-2008) 业厂界环境噪声持 (GB12348-2	及《工业企 非放标准》	质单 位监 测

本工程动态投资约为 5125.7 万元, 其中环保投资 40.5 万元, 占总投资的 0.79%。 本项目环保投资情况见表 5-2。

表 5-2 环保投资估算表

环保 投资

編号	项目名称	费用 (万元)	具体内容	责任 主体
1	生态环境保护费	8	变电站间隔扩建侧、电缆线路沿线、塔基区及施工 临时占地植被恢复等措施	
2	水环境保护费	0.5	施工场地设置沉沙池,施工人员就近租用周边民房,产生的生活污水纳入当地生活污水处理系统	
3	固废处置及利用 费	5	主要包括施工期生活垃圾、拆除的导线、建筑垃圾 清运等	建设单位
4	大气污染防治费	1	设置围挡、场地洒水以及防尘布等	中型
5	声环境污染防治 费	2	设置施工围挡,选用低噪声设备,加强施工机械和 运输车辆的保养等	
6	宣传培训费	1	施工期环境保护、电磁环境及环境法律知识培训等	
7	环保咨询费	23	环评、竣工环保验收、环境监测费等	
]	不保投资合计	40.5	-	-

六、主要环境保护措施监督检查清单

内容	施工期		运营期	1
要素	环境保护措施	验收要求	环境保护措施	验收要求
陆生生态	(1)避让措施: ①下一阶段设计中,进一步优化铁塔设计和线路路径,减少永久占地和对林木的砍伐量;塔基设计定位时,尽量避开林地,减少位于林地内的塔基数量。 ②合理规划施工临时道路、牵张场等临时场地,宏墙变电站间隔扩建工程及电缆线路工程利用水江大道等现有道路,部分位于山顶及山腰杆塔利用山区防火林带、邻近线路检修道路等,合理划定施工范围和人员、车辆的行走路线,避免对施工范围之外区域的动植物造成碾压和破坏。 (2)减缓措施: ①严格控制宏墙变电站间隔扩建施工占地,合理安排施工工序和施工场地,将项目临时占地合理安排在征地范围内,优先利用荒地、劣地,减少植被破坏。 ②线路根据地形条件采用全方位高低腿铁塔,基础开挖时选用影响较小开挖方式,尽量少占土地,减少土石产开挖量及水土流失,保护生态环境;基础开挖临时堆土应采用临时拦挡措施,用苫布覆盖,回填多余土石方选择合适地点堆放,并采取措施进行防护。 ③塔基施工占用林地时,施工前应进行表土剥离,将表土单独堆存并做好覆盖、拦挡等防护措施,施工结束后用于项目区植被恢复或耕作区域表层覆土。 ④严格控制塔基周围的材料堆场范围,尽量在塔基占地范围内进行施工活动。牵张场选址应尽量避让植被密集区,尽量选择线路沿线空地布置,减少植被破坏,并可采用钢板铺垫,	施工期生态环境 落实,	加强对宏墙 220kV 变电站间隔扩建侧、电缆线路及架空线路沿线巡视及管理,加强对宏墙 220kV变电站间隔扩建侧、电缆线路沿线及塔基周边生态的管护。	站区周边及线路沿线植被恢复良好。

内容	施工期		运营期	运营期	
要素	环境保护措施	验收要求	环境保护措施	验收要求	
	减少倾轧。 ⑤施工临时道路应尽可能利用园区内道路以及林区小路等现有道路。 ⑥对可能出现较大汇水面且土层较厚的塔位要求开挖排水沟,并顺接入原地形自然排水系统;位于斜坡的塔基表面应做成斜面,恢复自然排水,排水沟均采用浆砌块石排水沟。⑦经过植被较好的区域时应采用无人机放线等施工架线工艺,施工现场使用带油料的机械器具,应铺设彩条布防止油料跑、冒、滴、漏,防止对土壤和水体造成污染。 ⑧施工中尽量控制声源,选取低噪声设备,并合理安排强噪声施工行为的时间,尽量减少施工噪声对野生动物的干扰。 (3)恢复与补偿措施: ①施工结束后宏墙变电站间隔扩建侧及电缆线路沿线及时进行绿化或植被恢复,塔基临时占地处应及时进行清理、松土、覆盖表层土,除土地条件较好的临时占地区域植被恢复尽可能利用植被自然更新,对确需进入人工播撒草籽进行植被恢复的区域,选择当地的乡土植物进行植被恢复,严禁引入外来物种;②杆塔拆除后,对塔基基础地上部分进行拆除,地下部分采取保留,并对塔基基础根据周边用地性质进行覆土恢复耕作或生态恢复。 (4)管理措施: ①施工前,施工单位应做好施工期环境管理与教育培训、印发环境保护手册,组织专业人员对施工人员进行环保宣传教育,施工期严格施工红线,严格行为规范,进行必要的管理监督。				

内容	施工期		运营期		
要素	环境保护措施	验收要求	环境保护措施	验收要求	
	②在人员活动较多和较集中的区域,如生产区域、项目部附近,粘贴和设置环境保护方面的警示牌,提醒人们依法保护自然环境。				
水生生态	无	无	无	无	
地表水环境	(1)设计阶段 ①变电站间隔基础、电缆排管基础及部分位于水江大道附近 杆塔基础采用商品混凝土,部分拟建杆塔位于山顶及山腰采 用散装水泥; ②线路塔基施工所用河沙、石子、水泥等施工材料均外购, 所采用的沙石料清洗均由供货方清洗完毕后再运输至塔基 附近,现场不进行沙石料清洗。 (2)施工期 ①施工人员就近租用周边民房,产生的生活污水纳入当地生 活污水处理系统; ②施工期在施工场地适当位置设置沉沙池,少量混凝土养护 废水及钻浆废水等经沉淀后,用于场地洒水或喷淋,不外排。	施工期水环境保护措施均得到落实,施工废水合理处理,未对周边水环境造成污染。	无	无	
地下水及土 壤环境	无	无	无	无	
声环境	(1) 设计阶段: 在设备选型时选用符合国家噪声标准的低噪声施工设备。 (2) 施工阶段: ①选用符合国家噪声标准的低噪声施工设备,优选低噪声施工作业方式,严禁进行爆破作业;	施工期声环境保护措施均得到落实。	加强巡查和检查,定期 开展环境监测,确保线路沿线声环境质量满足相应区域标准要求,并及时解决公众合理的环境保护诉求。	宏墙 220kV 变电站 间隔扩建侧厂界噪 声排放满足《工业 企业厂界环境噪声 排放标准》 (GB12348-2008)	

内容	施工期		运营期	1
要素	环境保护措施	验收要求	环境保护措施	验收要求
	②施工时合理布置施工场地,宏墙变电站间隔扩建工程及电缆线路沿线施工场地设置施工围挡; ③避免夜间施工,如因工艺特殊情况要求,需在夜间施工而产生环境噪声污染时,应按《中华人民共和国环境噪声污染防治法》的规定,取得相关主管部门的审批,并在施工区域附近进行公告; ④加强施工机械和运输车辆的保养,减小机械故障产生的噪声。			中3类排放标准; 线路沿线评价范围 内声环境保护目标 声环境质量满足 《声环境质量标 准》 (GB3096-2008) 中相应区域标准限 值要求。
振动	无	无	无	无
大气环境	(1)设计阶段 针对施工任务和施工场地环境状况,制定合理的施工计划,缩短施工周期,减少施工现场的作业面,减轻施工 扬尘对环境的影响。 (2)施工期 ①施工运输车辆应采用密封、遮盖等防尘措施; ②对施工道路和施工现场定时洒水、喷淋,经常清洗运输车辆,避免尘土飞扬; ③宏墙变电站间隔扩建基础、电缆排管基础及线路塔基基础 开挖时,对临时土方进行遮盖,施工完毕后及时进行回填压 实; ④施工过程中,建设单位应当对裸露地面进行覆盖;暂时不 能开工的建设用地超过三个月的,应当进行绿化、铺装或者 遮盖;	施工期大气环境 保护措施均得到 落实。	无	无

内容	施工期		运营期		
要素	环境保护措施	验收要求	环境保护措施	验收要求	
	⑤施工现场禁止将包装物、可燃垃圾等固体废弃物就地焚烧。				
固体废物	(1)设计阶段 尽可能减少开挖面积和开挖量。 (2)施工期 ①施工人员租住当地民房,产生的生活垃圾纳入当地生活垃圾收集处理系统; ②工程临时开挖土石方临时堆砌时应尽量选择周边空地,宏墙 220kV 变电站间隔扩建工程及电缆排管挖方全部回填于宏墙 220kV 变电站征地区域内,架空线路基础开挖产生的余土及少量钻渣拟在塔基周围低洼处进行回填压实,工程沿线不设弃渣场; ③工程拆除的杆塔、导线、绝缘子、金具等均交由电力物资回收部门统一调配,不随意倾倒; ④工程拆除的少量杆塔基础和拆除的宏墙 220kV 变电站部分围墙产生的建筑垃圾交由有运输资质单位清运至建筑垃圾消纳场,不随意倾倒; ⑤施工过程中产生的施工废物料应分类集中堆放,尽可能回收利用,不能回收利用的及时清运交由相关部门进行处理。	施工期固体废物 环境保护措施均 得到落实。	无	无	
电磁环境	(1) 设计阶段 ①架空线路导线对地距离需满足现有设计高度,并严格按照《110kV~750kV架空输电线路设计规范》(GB50545-2010)和设计高度进行施工; ②本项目新建架空线路与沿线环境保护目标之间的距离不应小于本评价提出的电磁达标距离,即在不考虑风偏的情况	导线对地高度和 与环境保护目标 间的距离满足设 计规定的要求	①加强环境管理,定期进行环境监测工作,确保项目周边电磁环境小于《电磁环境小于《电磁环境控制限值》(GB 8702-2014)中的公众曝露控制限值。	宏墙 220kV 变电站 间隔扩建侧厂界电 磁环境满足《电磁 环境控制限值》 (GB8702-2014) 4000V/m 和 100μT	

内容	施工期		运营期	I
要素	环境保护措施	验收要求	环境保护措施	验收要求
	下,在现有设计高度前提下,新建 220kV 单回架空线路(三角排列)段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 5m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可);新建 220kV 单回架空线路(导线垂直)并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 6m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可)。新建 110kV 架空线路需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 3m,或与下相导线线下垂直距离至少为 3m(满足二者条件之一即可)。 (2)施工期 ①电缆线路段适当增加埋深。		②输电线路穿越非居民区时,在工频电场强度大于 4000V/m 且 小于10kV/m 的耕地、园地等公众容易到达的场所区域内设置警示和防护指示标志。	公众曝露控制限值的要求;线路沿境保护目标处电磁环境保护目标处电磁环境控制 限值》(GB8702-2014)4000V/m和100μT公众曝露控制地、证据控制的正规管理的联系(架空线的形式,并是多数,以下的工规。
环境风险	无	无	无	无
环境监测	无	无	①工频电场、工频磁场: 环境保护设施调试期 1 次;投诉纠纷时加强监测。 ②噪声:环境保护设施调试期 1次;运行期夏季负荷高峰等特殊情况监测 1 次;投诉纠纷时加强监测。	监测计划满足环境影响评价文件要求。
其他	无	无	无	无

七、结论

7.1公众沟通工作结论

根据建设单位提供的公众沟通工作总结报告。建设单位在本次公众沟通工作中采取了现场公告及网络全文公示方式进行。在现场公告及网络全文公示期间,未有群众反映环保相关意见。

7.2结论

重庆渝湘铁路水江北牵引站220千伏外部供电工程的建设符合产业政策、符合城市规划、符合当地电网规划、符合重庆市"三线一单"管控要求。在切实落实本评价提出的环境保护措施后,项目污染物能够达标排放,项目对周围环境的影响均可控制在国家标准允许的范围内。因此,从环境保护角度,本建设项目环境影响是可行的。

重庆渝湘铁路水江北牵引站 220kV 外部供电工程 电磁环境影响评价专题 (全文公示稿)

建设单位: 国网重庆市电力公司建设分公司

评价单位: 湖北君邦环境技术有限责任公司

2024年2月

目录

1 总	总论		1
	1.2 工程概况		1
	1.3 编制依据		2
	1.4 评价因子		2
	1.5 评价标准		2
	1.6 评价等级		3
	1.7 评价范围		3
	1.8 评价时段		3
	1.9 电磁环境保护目标	示	4
2 电	电磁环境现状评价		7
	2.1 监测因子		
	2.5 监测时间及监测。	条件	7
	2.6 监测布点及布点	方法	8
	2.7 电磁环境监测布	点合理性分析	11
	2.8 监测结果分析		11
3 电	电磁环境影响预测与评	价	1.5
	3.1 宏博 220kV 麥由	站间隔扩建工程电磁环境影响分析	
		滋环境影响预测分析	
		兹环境影响预测分析	
4 ♯	自磁防护措施		
	•••••		91
3 绍	吉论与建议		92
	5.1 结论		92
	5.2 环保措施		93
	5.3 建议		94

1.1 项目由来

为满足渝湘高速铁路重庆至黔江段水江北牵引站用电需求,国网重庆市电力公司建设分公司拟开展"重庆渝湘铁路水江北牵引站 220kV 外部供电工程"。

为分析本工程对周边电磁环境的影响,我公司编制人员按照《环境影响评价技术导则输变电》(HJ24-2020),编制完成了《重庆渝湘铁路水江北牵引站 220kV 外部供电工程电磁环境影响评价专题(送审稿)》。经专家审核后,我公司在认真总结专家意见的基础上,对报告表进行了修改和完善,编制完成了《重庆渝湘铁路水江北牵引站 220kV 外部供电工程电磁环境影响评价专题》(报批版)。

1.2 工程概况

根据项目核准批复及选址意见书,工程分为以下三个建设内容。

(1) 宏墙 220kV 变电站间隔扩建工程

在宏墙 220kV 变电站西北侧厂界外新征用地内扩建 2 个 220kV 出线间隔至水江北牵引站,本期在征地范围内扩建两个电缆间隔基础,安装相应的配电装置,并完善相应的一、二次设备和通信设备。

(2) 新建宏墙变电站—水江北牵引站 2 回 220kV 线路工程

线路起于宏墙 220kV 变电站止于水江北牵引站,线路简称 220kV 宏水牵 I、II 线。涉及新建架空线路折单长度 4.9km,其中 220kV 宏水牵 I 线 2.4km,220kV 宏水牵 II 线 2.5km;涉及新建电缆线路折单长度 0.95km,其中 220kV 宏水牵 I 线 0.44km,220kV 宏水牵 II 线 0.51km。

(3) 110kV 大宏线迁改工程

线路起于原 110kV 大宏线 81#塔,止于原 110kV 大宏线 85#塔。拆除原 110kV 大宏线 81#-85#段线路约 1km,拆除 3 基杆塔(原 82#、原 83#、原 84#),在原 110kV 大宏线 81#-85#段线路南侧新建电力廊道(已取得规划选址意见书),新建 110kV 单回架空线路约 1.01km,新建 3 基杆塔。

详细工程概况见报告表正文表 2-1。

1.3 编制依据

1.3.1 政策、法规

- (1)《中华人民共和国环境保护法》(2015年修订);
- (2) 《中华人民共和国环境影响评价法》(2018年12月29日修正版);
- (3)《重庆市辐射污染防治办法》(重庆市人民政府令第338号)。

1.3.2 工程资料及有关批复文件

- (1)《重庆渝湘铁路水江北牵引站 220kV 外部供电工程 初步设计阶说明书》重庆展 帆电力工程勘察设计咨询有限公司,2023 年 4 月;
 - (2) 建设单位提供的其他工程相关资料。

1.3.3 采用的评价技术导则、规范

- (1)《输变电建设项目环境保护技术要求》(HJ1113-2020);
- (2) 《环境影响评价技术导则 输变电》(HJ24-2020);
- (3) 《建设项目竣工环境保护验收技术规范 输变电》(HJ705-2020);
- (4) 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016);
- (5) 《交流输变电工程电磁环境监测方法(试行)》(HJ681-2013);
- (6) 《电磁环境控制限值》(GB 8702-2014)。

1.3.4 相关监测报告

- (1) 《重庆渝湘铁路水江北牵引站 220kV 外部供电工程》(渝雍环监(委)〔2023〕 074号):
- (2)《重庆渝湘铁路水江北牵引站 220kV 外部供电工程补充监测》(渝雍环监(委) (2023) 146号);
- (3)《重庆渝湘铁路水江北牵引站 220kV 外部供电工程补充监测》(渝雍环监(委)〔2024〕008 号);
- (4) 《开封兰考 220kV 景文变 3 号主变扩建工程检测报告》((2020) 环监(电磁-电力) 字第(273)号)。

1.4 评价因子

根据项目特点,本专章评价因子为工频电场、工频磁场。

1.5 评价标准

本工程运行期工频电、磁场环境执行《电磁环境控制限值》(GB8702-2014)公众曝露控制限值,详见表1-1。

表1-1 本项目执行的工频电、磁场标准明细表

要素	标准名称	适用	标准限值	直	 评价对象	
分类	你任石你	类别	参数名称	浓度限值		
			工频电场强度	4000V/m	电磁评价范围内公众曝露控制	
电磁	《电磁环境控制限		工频磁感应强度	100μΤ	限值	
环境	值》(GB 8702- 2014)	50Hz	工频电场强度	10kV/m	架空线路线下的耕地、园地、 牧草地、畜禽饲养地、养殖水 面、道路等场所的电磁环境	

1.6 评价等级

根据《环境影响评价技术导则 输变电》(HJ 24-2020),如建设项目包含多个电压等级,或交、直流,或站、线的子项目时,按最高电压等级确定评价工作等级。

表1-2 项目电磁环境影响评价工作等级判定表

分类	电压等级	工程	条件	评价工作等级
	220kV	变电站工程	户外变	二级
交流	220kV	架空线路	边导线地面投影外两侧各15m 范围内有电磁环境保护目标的架空线。	二级
义机		电缆线路	电缆线路	三级
	110kV	输电线路	边导线地面投影外两侧各10m 范围内无电磁环境保护目标的架空线。	三级

根据上表,确定本项目电磁环境影响评价工作等级为二级。

1.7 评价范围

根据《环境影响评价技术导则 输变电》(HJ24-2020),本项目电磁影响评价范围见表 1-3。

表 1-3 本项目电磁环境评价范围一览表

工程内容	评价范围
宏墙 220kV 变电站间隔扩建工程	宏墙 220kV 变电站间隔扩建侧厂界外 40m 范围内
新建 220kV 宏水牵 I、II 线工程	架空线路边导线地面投影外两侧各 40m 范围内
初廷 220KV 宏小年 I、II 线工柱	电缆线路管廊两侧边缘各外延 5m (水平距离)
110kV 大宏线迁改工程	架空线路边导线地面投影外两侧各 30m 范围内

1.8 评价时段

本专题主要对运行期间进行评价。

1.9 电磁环境保护目标

1.9.1 宏墙 220kV 变电站间隔扩建工程

(1) 电磁环境保护目标

根据现场调查,宏墙 220kV 变电站间隔扩建侧围墙外 40m 电磁环境影响评价范围内无电磁环境保护目标分布。

(2) 规划电磁环境保护目标

根据南川区工业园区水江组团控制性详细规划,220kV宏墙变电站间隔扩建侧围墙外40m范围内为规划工业用地,本项目规划电磁环境保护目标详见下表及附图 6。

表 1-4 宏墙 220kV 变电站间隔扩建工程规划电磁环境保护目标一览表

序 号	环境保护目标名 称	方位及最近 距离	评价范围 内数量	建筑物楼 层、高度	功能	环境保护 要求 ^①	代表监测点位			
1	变电站西北侧规 划工业用地	变电站西北 侧,紧邻	/	尚未建设	エ厂	E, B	利用 2#	渝雍环监 (委) 〔2023〕 074 号		
备注	备注: ①E—工频电场,B—工频磁场。									

2.3.2 新建 220kV 宏水牵 I、II 线

(1) 现状电磁环境保护目标

根据现场调查,本项目拟建 220kV 宏水牵 I、II 线电缆线路沿线评价范围内无电磁环境保护目标分布。

根据现场调查,本项目拟建 220kV 宏水牵 I、II 线架空线路沿线评价范围内分布有 5 处电磁环境保护目标。

表 1-5 拟建 220kV 宏水牵 I、II 线电磁环境保护目标一览表

编	打控制成日		宏水牵 I 线 置关系		宏水牵 Ⅱ 线 五置关系	上其仙光怎姓內片里	7.2.10.4.12.12.12.12.12.12.12.12.12.12.12.12.12.	フキケケケ H/m k米		环境	仏≠	三 1 大 初山 上	对应
- 第 号	环境敏感目 标名称 	方位及最 近距离 [©]	设计导线 对地最低 高度 [®]	方位及最 近距离 [©]	设计导线 对地最低 高度 [®]	与其他并行线路位置 关系	评价范围内 数量	建筑物楼 层、高度	功能	保护 要求 ^②	1\衣	を监测点 位	图示
1)	重庆市博勇 建筑工程有 限公司项目 部★	线路西北 侧最近约 17m	约 25m	线路跨越	约 26m	500kV 张竹一线东南侧约 40m,500kV 张竹二线跨越,110kV南中线北侧约 40m,110kV大宏线北侧约56m	1 层坡项房 屋 4 栋,约 10 人	1 层坡顶房 屋 4 栋, 高约 4.5m	エ厂	Е, В	4# \ 5#		附图 3-1
2	南川工业园 水江组团黄 **家库房	/	/	线路西北 侧最近约 13m	约 24m	500kV 张竹一线东南侧约 44m,500kV 张竹二线西北侧约 43m	1 层坡顶房 屋 1 栋, 1 人	1 层坡顶房 屋 1 栋, 高约 3.5m	库房	E, B	/	渝雍环	附图 3-1
3	重庆众城再 生资源综合 利用有限公 司门卫室	/	/	线路西北 侧最近约 26m	约 26m	500kV 张竹一线东南侧约 28m,500kV 张竹二线西北侧约 52m	1 层平顶房 屋 1 栋(楼 顶不可到 达),1 人	1 层平顶房 屋 1 栋, 高约 3m	エ厂	E, B	/	(委) (2023) 074 号	附图 3-1
4	重庆市盛邦 石粉有限公 司门卫室★	线路西南侧最近约38m	约 26m		/	110kV 大宏线东南侧 约 5m,110kV 南中 线东南侧约 17m	1 层平顶房 屋 1 栋(楼 顶不可到 达),1 人	1 层平顶房 屋 1 栋, 高约 3m	エ厂	E, B	6#	3	附图 3-1
5	中铁十八局 集团材料库 房★		/	线路东南 侧最近约 25m	约 25m	无	1 层坡顶彩 钢棚 3 栋, 约 25 人	1 层坡顶彩 钢棚 3 栋,高约 3~6m	エ厂	E, B	10#		附图 3-2

注: ①线路与周围环境敏感目标的相对位置根据目前设计阶段线路路径及居民住宅分布情况得出, 最终距离以实际建设情况为准;

②E—工频电场; B—工频磁场;

③导线对地高度根据设计资料平断面图所得,线路与环境保护目标的实际线高可能会随着后续设计深入而有所变化;

④★本项目典型监测点位。

(2) 规划电磁环境保护目标

根据南川区工业园区水江组团控制性详细规划,本项目拟建 220kV 宏水牵 I、II 线电缆 线路沿线评价范围内分布有 1 处规划电磁环境保护目标,详见附图 6。

表 1-6 拟建 220kV 宏水牵 I、II 线沿线评价范围内规划电磁环境保护目标一览表

户	环境 敏感 架设		与 220kV 宏水牵 I 线相对位置关系 架设		牵Ⅱ纟	kV 宏水 浅相对位 关系	评价	建筑物楼	功	环境 保护			对应
号目标	目标名称	方式 方式	方位及 最近距 离 ^①	设计导 线对地 最低高 度 [®]	方位 及最 近距 离 [©]	设计导 线对地 最低高 度 [®]	范围 内数 量	想 层、 高度	が 能	要求②	代表出	监测点位	图 示
1	规划 工业 用地	电缆	线路穿 越	/	线路 穿越	/	/	尚未 建设	工厂	E, B	利用 3#	渝雍环 监 (委)	附 图 6
2	规划 工业 用地	架空	线路跨 越	约 19m	线路 跨越	约 17m	/	尚未 建设	工厂	E, B	利用 6#	〔2023 〕074 号	附 图 6

注:①线路与周围环境敏感目标的相对位置根据目前设计阶段线路路径及居民住宅分布情况得出,最终距离以实际建设情况为准;

2.3.3 110kV 大宏线迁改工程

(1) 现状电磁环境保护目标

根据现场调查,本项目 110kV 大宏线迁改线路沿线评价范围内无电磁环境保护目标分布,详见附图 3-2。

(2) 规划电磁环境保护目标

根据南川区工业园区水江组团控制性详细规划,本项目 110kV 大宏线迁改线路沿线评价范围内分布有 1 处规划电磁环境保护目标,详见附图 6。

表 1-7 110kV 大宏线迁改线路沿线评价范围内规划电磁环境保护目标一览表

序号	环境敏感 目标名称	方位及最近距 离 ^①	设计导线 对地最低 高度 [®]	评价范围内 数量	建筑物楼 层、高度	功能	环境保 护要求	对应 图示
1	规划供电 用地	线路跨越	约 13m	/	尚未建设	供电用 地	E, B	附图 6

注:①线路与周围环境敏感目标的相对位置根据目前设计阶段线路路径及居民住宅分布情况得出,最终距离以实际建设情况为准;②E—工频电场;B—工频磁场;③导线对地高度根据设计资料平断面图所得,线路与环境保护目标的实际线高可能会随着后续设计深入而有所变化。

②E—工频电场; B—工频磁场;

③导线对地高度根据设计资料平断面图所得,线路与环境保护目标的实际线高可能会随着后续设计深入 而有所变化。

2 电磁环境现状评价

为了解项目区域电磁环境现状,我公司委托有监测资质单位于2023年6月6日~6月7日以及2023年12月13日对项目所在地电磁环境质量现状进行了监测。

2.1 监测因子

工频电场、工频磁场。

2.2 监测方法及规范

《环境影响评价技术导则输变电》(HJ24-2020)

《交流输变电工程电磁环境监测方法(试行)》(HJ681-2013)

2.3 监测频次

工频电场、工频磁场在昼间各监测1次。

2.4 监测仪器

监测仪器情况见表 2-1。

表 2-1 监测仪器情况一览表

仪器名称及型号	仪器编号	计量校准/检定证书编号	有效期至
场强仪	H-0441	2022E22 10 4517746001	2024年4月9号
NBM-550/EHP-50F	100WY70749	2023F33-10-4517746001	2024年4月9号

2.5 监测时间及监测条件

表 2-2 监测时间及监测环境条件

监测日期	天气	温度(℃)	风速 (m/s)	湿度(%)
2023年6月6日-2023年6月7日	晴	27.6~28.8	$0\sim 0.7 \text{m/s}$	57.3~61.3
2023年12月13日	晴	24.0~24.2	0∼2.2m/s	67.7~68.1
2024年1月18日	阴	13.0~13.7	0∼1.0m/s	69.2~72.2

表 2-3 监测期间运行负荷表

次 2-5											
		20)23 左	<u> </u>	08时(00分~	<u> 2023年6月</u>	7日08时	<u>00分</u>		
电	丘	最	£	最高]	最低	最高	最低	最高	最低	最高
等级与		有功	力	有功	j	无功	无功	电压	电压	电流	电流
守级-	1 在 你	MV	V	MW	N	MVar	MVar	kV	kV	A	A
220kV 宏	2号主要	变 95.3	37	112.53	1	2.73	20.37	230.4	233.5	278.9	310.6
墙变电站	3号主	变 88.6	54	103.57	1-	4.12	19.63	230.4	233.2	245.7	305.7
500kV 引	长竹二线	189.	77	267.88	1	2.83	26.57	528.7	535.6	287.3	385.9
110kV	南中线	19.3	33	35.75	2	2.11	4.56	113.5	115.3	105.3	189.7
110kV	大宏线	5.1	4	16.66	1	1.69	5.48	113.4	115.7	34.7	110.3
	2023年12月13日15时00分~2023年12月13日23时59分										
电压	:	最低		最高	最低	忎	最高	最低	最高	最低	最高
等级与2	I	有功		有功	无り	力	无功 MVar	电压 kV	取同 电压 kV	电流	电流
- 守级一	白你	MW		MW	MV	ar	儿切 IVI Val	电压 K V	电 压 K V	电流 A	A
110kV 大	宏线	18.67		21.13	1.2	1	2.11	114.41	115.44	112.71	163.73
		2024 年	Ξ1 <i>)</i>	月18日1	5时00	0分~	-2024年1	月18日23	3时00分		
电压	:	最低		最高	最低	氐	最高	最低	最高	最低	最高
ー ^{モ 田 田 田} 等级与 ⁻		有功		有功	无り	力				电流	电流
- 守级与 ²	台 你	MW		MW	MV	ar	无功 MVar	电压 kV	电压 kV	A	A
500kV 引	长竹二	101.72		260.21	2.2	4	7.00	520.1	525.6	207.2	205.0
线		191.73	1 2	269.21	2.3	4	7.99	530.1	535.6	287.3	385.9
110kV 南	中线	21.93		38.67	0.3	1	3.11	114.3	115.3	92.3	195.7
110kV 大	宏线	9.77		20.31	0.2	2	1.48	114.2	115.6	89.5	133.7

2.6 监测布点及布点方法

本次评价共设15个监测点位,其中宏墙220kV 变电站间隔扩建工程1个,拟建220kV 宏水牵 I、II 线12个,110kV 大宏线迁改工程2个。具体监测点位见表2-4、附图3。

表 2-4 本工程电磁监测点位一览表

序号	监测点位	监测点位描述	东经	北纬	代表性分析	代表监测,	点位
1	拟建电缆正上方	监测点位于拟建电缆正上方, 距离 10kV 宏中 线边导线水平距离约 13 米, 距离最低导线垂直 距离约 10 米。	**	**	线路沿线背景		1#
2	拟建电缆正上方	监测点位于拟建电缆正上方, 距离 10kV 宏中 线边导线水平距离约 20 米, 距离最低导线垂直 距离约 10 米。	**	**	线路沿线背景		2#
3	220kV 宏墙变电站 西北侧	工频电场强度、工频磁感应强度监测点位于 220kV 宏墙变电站西北侧围墙外 5 米处,距离 10kV 龙水线-大支线边导线水平距离约 4 米, 距离最低导线垂直距离约 10 米。	**	**	220kV 宏墙变电站 间隔扩建侧		3#
4	重庆市博勇建筑工程有限公司年产 40万吨磷(脱硫)石膏制新型轻质建材项目部	监测点位于重庆市博勇建筑工程有限公司年产40万吨磷(脱硫)石膏制新型轻质建材项目部旁,拟建线路正下方,距离500kV张竹二线边导线水平距离约24米,距离最低导线垂直距离约40米。	**	**	77	渝雍环监	4#
5	重庆市博勇建筑工程有限公司年产 40万吨磷(脱硫)石膏制新型轻质建材项目部	监测点位于重庆市博勇建筑工程有限公司年产40万吨磷(脱硫)石膏制新型轻质建材项目部旁,拟建线路正下方,距离500kV张竹二线边导线水平距离约7米,距离最低导线垂直距离约40米。	**	**	- 环境保护目标	(委) (2023) 074 号	5#
6	重庆市盛邦石粉有 限公司门卫室	监测点位于重庆市盛邦石粉有限公司门卫室旁,距离 110kV 大宏线边导线水平距离约 4米,距离最低导线垂直距离约 52米;距离 110kV 南中线边导线水平距离约 16米,距离最低导线垂直距离约 38米。	**	**	环境保护目标		6#
7	拟建线路正下方	监测点位于拟建线路正下方, 距离 10kV 宏渝 线边导线水平距离约 13 米, 距离最低导线垂直 距离约 12 米。	**	**	线路沿线背景		8#
8	拟建线路正下方	监测点位于拟建线路正下方。	**	**	线路沿线背景		9#
9	中铁十八局集团材 料库房	监测点位于中铁十八局集团材料库房屋后(近 拟建线路侧)。	**	**	环境保护目标		10#

序号	监测点位	监测点位描述	东经	北纬	代表性分析	代表监测,	点位
10	南川区水江镇大地村	监测点位于拟建线路正下方,距离 110kV 大宏线边导线水平距离约 36 米,距离最低导线垂直距离约 53 米。	**	**	迁改线路背景	渝雍环监 (委)	补 1-1#
11	南川区水江镇大地 村	监测点位于 110kV 大宏线正下方, 距离最低导 线垂直距离约 53 米。	**	**	度 110ky 七字坐计	〔2023〕146 号	补 1-2#
12	110kV 大宏线 87 号~88 号塔之间	监测点位于 110kV 大宏线 87 号~88 号塔之间, 110kV 大宏线正下方, 距离最低导线垂直距离约 16 米。	**	**	原 110kV 大宏线达标情况		补 2-1#
13	110kV 南中线与拟建 电缆交叉处	监测点 110kV 南中线与拟建电缆交叉处,拟建电缆正上方,110kV 南中线正下方,距离最低导线垂直距离约 24 米; 距离 110kV 大宏线边导线水平距离约 30 米, 距离最低导线垂直距离约 24 米; 距离 500kV 张竹二线边导线水平距离约 38 米, 距离最低导线垂直距离约 23 米。	**	**	交叉跨越处	渝雍环监 (委)	补 2-2#
14	重庆市博勇建筑工程有限公司年产 40万吨磷(脱硫)石膏制新型轻质建材项目部	监测点位于重庆市博勇建筑工程有限公司年产40万吨磷(脱硫)石膏制新型轻质建材项目部旁,500kV张竹二线正下方,距离最低导线垂直距离约40米。	**	**	环境保护目标	〔2024〕008 号	补 2-3#
15	500kV 张竹二线与 拟建电缆交叉处	监测点位于 500kV 张竹二线与拟建电缆交叉处,拟建电缆正上方,500kV 张竹二线正下方,距离最低导线垂直距离约 20 米。	**	**	交叉跨越处		补 2-4#

备注:根据现场调查,线路沿线电磁环境保护目标均为坡顶房屋,楼顶不具备监测条件,故本次环评监测未在建筑物楼顶布点监测。

2.7 电磁环境监测布点合理性分析

根据《环境影响评价技术导则输变电》(HJ24-2020),本项目电磁环境影响为二级评价,评价要求为"对于输电线路,其评价范围内具有代表性的电磁环境保护目标的电磁环境现状应实测,非电磁环境保护目标处的典型线位电磁环境现状可实测,也可利用评价范围内已有的最近3年内的电磁环境现状监测资料。对于变电站,其评价范围内临近各侧站界的电磁环境保护目标的电磁环境现状应实测,站界电磁环境现状可实测,也可利用已有的最近3年内的电磁环境现状监测资料"。本次评价共设15个监测点位,均为实测,监测点位代表性及合理性分析详细见下表。

工程名称	电磁环境 保护目标		监测点位数量	代表性分析
宏墙 220kV 变电 站间隔扩建工程	无	1 处	3#	220kV 宏墙变电站间隔扩建西北侧厂界
der att a color a de la			1#、2#、8#、9#	拟建线路沿线背景
新建 220kV 宏水 牵 I、II 线工程	5 处	11 处	4#、5#、6#、10#、补 2-3#	拟建线路沿线环境保护目标
中TV II 《工作			补 2-2#、补 2-4#	典型交叉跨越
110kV 大宏线迁	无	2 H	补 1-1#	拟建线路沿线背景
改工程		3 处	补 1-2#、补 2-1#	原 110kV 大宏线达标情况

表 2-5 本工程电磁监测点位合理性

(1) 宏墙 220kV 变电站间隔扩建工程

共设点位1个,位于间隔扩建厂界外(3#)。

间隔扩建侧评价范围内无电磁环境保护目标分布,故未布设监测点位。

(2) 新建 220kV 宏水牵 I、II 线工程

共设点位 11 个,拟建线路沿线共 5 处电磁环境保护目标,监测布点涵盖了全部电磁环境保护目标,此外监测布点考虑了线路沿线电磁环境背景值及拟建线路与已建线路交叉跨越处电磁环境现状。

(3) 110kV 大宏线迁改工程

因迁改线路沿线无电磁环境保护目标分布,共设点位 3 个,其中补 1-2#及补 2-1#监测点在正运行中的原 110kV 大宏线正下方导线对地较低处,用来反映原 110kV 大宏线线路沿线电磁环境质量现状。补 1-1#监测点在拟建线路正下方,用来反映线路沿线背景。

综合以上分析,本次环评监测布点数量满足《环境影响评价技术导则 输变电》(HJ24-2020)中监测布点相关要求,故本环评监测布点合理。

2.8 监测结果分析

监测点位电磁环境监测结果见表 2-6。

表 2-6 监测点位工频电场强度、工频磁感应强度监测结果

2.0	HANTII LA IV.	116 771 1- 17 144 7 1	工频电场强	工频磁感应	rr	IL MILE EL	IANTI IAN	A.V.	
序号	监测点位	监测点位描述	度(V/m)	强度(μT)	所属工程	监测报告	监测点位	备注	
1	拟建电缆正上方	监测点位于拟建电缆正上方, 距离 10kV 宏中线边导线水平距离约 13 米, 距离最低导线垂直距离约 10 米。	20.98	0.3477	新建 220kV 宏 水牵 I、II 线		1#	受已建 10kV 线路及变电站 影响,现状监 测值偏大	
2	拟建电缆正上方	监测点位于拟建电缆正上方,距离 10kV 宏中线边导线水平距离约 20 米,距离最低导线垂直距离约 10 米。	12.18	0.1110	工程		2#	受变电站影	
3	220kV 宏墙变电 站西北侧	工频电场强度、工频磁感应强度监测点位于 220kV 宏墙变电站西北侧围墙外 5 米处,距 离 10kV 龙水线-大支线边导线水平距离约 4 米,距离最低导线垂直距离约 10 米。	39.21	0.0795	宏墙 220kV 变 电站间隔扩建 工程		3#	响,现状监测 值偏大	
4	重庆市博勇建筑 工程有限公司年 产 40 万吨磷(脱 硫)石膏制新型 轻质建材项目部	监测点位于重庆市博勇建筑工程有限公司年产 40万吨磷(脱硫)石膏制新型轻质建材项目部旁,拟建线路正下方,距离 500kV 张竹二线边导线水平距离约 24米,距离最低导线垂直距离约 40米。	123.7	0.8399		渝雍环 监 (委)	4#	受己建 500kV	
5	重庆市博勇建筑 工程有限公司年 产 40 万吨磷(脱 硫)石膏制新型 轻质建材项目部	监测点位于重庆市博勇建筑工程有限公司年产 40万吨磷(脱硫)石膏制新型轻质建材项目部旁,拟建线路正下方,距离 500kV张竹二线边导线水平距离约7米,距离最低导线垂直距离约40米。	244.6	1.083	新建 220kV 宏	(2023) 074 号	1	5#	· 线路影响,现 状监测值偏大
6	重庆市盛邦石粉 有限公司门卫室	监测点位于重庆市盛邦石粉有限公司门卫室旁,距离110kV大宏线边导线水平距离约4米,距离最低导线垂直距离约52米;距离110kV南中线边导线水平距离约16米,距离最低导线垂直距离约38米。	25.57	0.3145	水牵 I、II 线 工程		6#	受已建 110kV 线路影响,现 状监测值偏大	
7	拟建线路正下方	监测点位于拟建线路正下方,距离 10kV 宏 渝线边导线水平距离约 13 米,距离最低导 线垂直距离约 12 米。	8.075	0.0225			8#	/	
8	拟建线路正下方	监测点位于拟建线路正下方。	1.551	0.0178			9#	/	
9	中铁十八局集团	监测点位于中铁十八局集团材料库房屋后	1.408	0.0168			10#	/	

	材料库房	(近拟建线路侧)。								
10	南川区水江镇大 地村	监测点位于拟建线路正下方,距离 110kV 大宏线边导线水平距离约 36 米,距离最低 导线垂直距离约 53 米。	22.51	0.1085		渝雍环 监 (委)	补 1-1#	受已建 110kV 线路影响,现		
11	南川区水江镇大 地村	监测点位于 110kV 大宏线正下方, 距离最低导线垂直距离约 53 米。	106.4	0.2158	110kV 大宏线 迁改工程	〔2023 〕146 号	补 1-2#	状监测值偏大		
12	110kV 大宏线 87 号~88 号塔之间	监测点位于 110kV 大宏线 87 号~88 号塔之间,110kV 大宏线正下方,距离最低导线垂直距离约 16 米。	233.6	0.6161			补 2-1#	受已建 110kV 线路影响,现 状监测值偏大		
13	110kV 南中线与 拟建电缆交叉处	监测点 110kV 南中线与拟建电缆交叉处,拟建电缆正上方,110kV 南中线正下方,距离最低导线垂直距离约 24 米; 距离 110kV 大宏线边导线水平距离约 30 米, 距离最低导线垂直距离约 24 米; 距离 500kV 张竹二线边导线水平距离约 38 米, 距离最低导线垂直距离约 23 米。	420.4	0.7966	新建 220kV 宏	渝雍环 监 (委) 〔2024 〕008号	监 (委) (2024	监 (委)	补 2-2#	受已建 110kV 及 500kV 线 路影响,现状 监测值偏大
14	重庆市博勇建筑 工程有限公司年 产 40 万吨磷(脱 硫)石膏制新型 轻质建材项目部	监测点位于重庆市博勇建筑工程有限公司年产 40 万吨磷(脱硫)石膏制新型轻质建材项目部旁,500kV 张竹二线正下方,距离最低导线垂直距离约 40 米。	315.1	1.346	新建 220kV 宏			补 2-3#	受已建 500kV 线路影响,现 状监测值偏大	
15	500kV 张竹二线 与拟建电缆交叉 处	监测点位于 500kV 张竹二线与拟建电缆交叉处,拟建电缆正上方,500kV 张竹二线正下方,距离最低导线垂直距离约 20 米。	1855	1.898			补 2-4#	受已建 500kV 线路影响,现 状监测值偏大		

(1) 宏墙220kV 变电站间隔扩建工程

根据监测结果,220kV 宏墙变电站间隔扩建侧工频电场强度监测值为39.21V/m,工频磁感应强度监测值为0.0795µT,低于《电磁环境控制限值》(GB 8702-2014)4000V/m及100µT 的公众曝露控制限值。

(2) 新建 220kV 宏水牵 I、II 线工程

根据监测结果,拟建 220kV 宏水牵 I、II 线沿线工频电场强度监测值在(1.408~1855) V/m 之间、工频磁感应强度监测值在(0.0168~1.898) μ T 之间,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100 μ T 的公众曝露控制限值。

(3) 110kV 大宏线迁改工程

根据监测结果,原 110kV 大宏线沿线典型监测点位工频电场强度监测值在 (106.4~233.6) V/m 之间、工频磁感应强度监测值在 (0.2158~0.6161) μT 之间,110kV 大宏线迁改线路沿线典型监测点位工频电场强度监测值为 22.51V/m、工频磁感应强度监测值 为 0.1085μT,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100μT 的公众曝露控制限值。

3 电磁环境影响预测与评价

根据《环境影响评价技术导则 输变电》(HJ24-2020)电磁环境影响预测及二级评价要求 "对于输电线路,电磁环境影响预测一般采用模式预测的方式,输电线路为地下电缆时,可采用 类比监测的方式;对于变电站、换流站、开关站、串补站,电磁环境影响预测应采用类比监测 的方式",本评价电磁环境影响评价预测思路如下:

- (1) 对宏墙 220kV 变电站采取选用同类型变电站进行类比监测的方法进行预测;
- (2) 对本项目架空线路采取模式预测的方法进行分析和评价;
- (3) 对本项目电缆线路采用类比监测的方法进行分析和评价。

3.1 宏墙 220kV 变电站间隔扩建工程电磁环境影响分析

3.1.1 类似分析思路

宏墙 220kV 变电站本期仅扩建 2 个 220kV 电缆出线间隔,扩建工程不新增主变压器,本次间隔扩建工程不会改变站内的主变、主母线等主要电气设备。增加的电气设备对变电站厂界外的工频电场、工频磁场基本上不构成增量影响,扩建工程完成后变电站区域电磁环境水平与变电站前期工程建成后的电磁环境水平相当。

为了解宏墙 220kV 变电站间隔扩建后变电站厂界处电磁环境影响,本次评价选用同类型变电站进行类比监测分析。

3.1.2 类比对象选择

根据电磁场分布及衰减理论:工频电场强度主要取决于电压等级及关心点与源的距离,并与环境湿度、植被及地理地形因子等屏蔽条件密切相关;工频磁感应强度主要取决于电流强度及关心点与源的距离。变电站电磁环境类别测量,从严格意义讲,具有完全相同的设备型号(决定了电压等级及额定功率、额定电流强度等)和完全相同布置情况(决定了距离因子)是最理想的,即:不仅有相同的主变数和容量,而且一次主接线也相同,布置情况也相同。但是要满足这样的条件是很困难的。

综合考虑建设规模、电压等级、容量、总平面布置、占地面积、主变距离围墙最近水平距离、架线型式、电气形式、母线形式、环境条件及运行工况等条件,结合上述类比对象选择原

则,本评价选择了位于河南省兰考县景文 220kV 变电站作为类比对象,湖北君邦环境技术有限责任公司武汉环境检测分公司于 2020 年 10 月 21 日对景文 220kV 变电站进行了现状监测,本工程宏墙 220kV 变电站与景文 220kV 变电站对比情况见表 3-1 和图 3-1。

表 3-1 宏墙 220kV 变电站与景文 220kV 变电站对比

项目名称	宏墙220kV 变电站(本项目)	景文220kV 变电站	相似性
电压等级	220kV 220kV		一致
主变容量	2×180MVA	3×180MVA	本项目占优
主变布置方式	户外变	户外变	一致
电气总平面布置	2台主变布置于变电站中部,户外布置; 220kV 配电装置布置在站区西南部,户外 AIS 布置; 110kV 配电装置布置在站区东北部,户外 AIS布置	3台主变布置于变电站中部,户外布置; 220kV 配电装置布置在站区南部,户外 AIS 布置; 110kV 配电装置布置在站区北部,户外 AIS 布置; 综合楼位于站区西南部	类似
主变距离围墙 最近距离	约60m	约8m	本项目占优
配电装置距离 围墙最近距离	约5m	约4m	本项目占优
占地面积	约23078m ²	约20000m ²	本项目占优
出线方式	本期电缆出线	架空出线	本项目占优
电气形式	户外 AIS 布置	户外 AIS 布置	一致
母线形式	双母线接线	双母线接线	一致
周边环境概况	工业园区	城市、平地、周边建筑密集	类似
气候环境	年均气温16.6℃,亚热带湿润季风 气候,年平均相对湿度80%	暖温带季风气候,年均气温14℃,年平 均相对湿度69.6%	类似
运行工况	/	运行电压已达到设计额定电压等级,变 电站运行正常	/

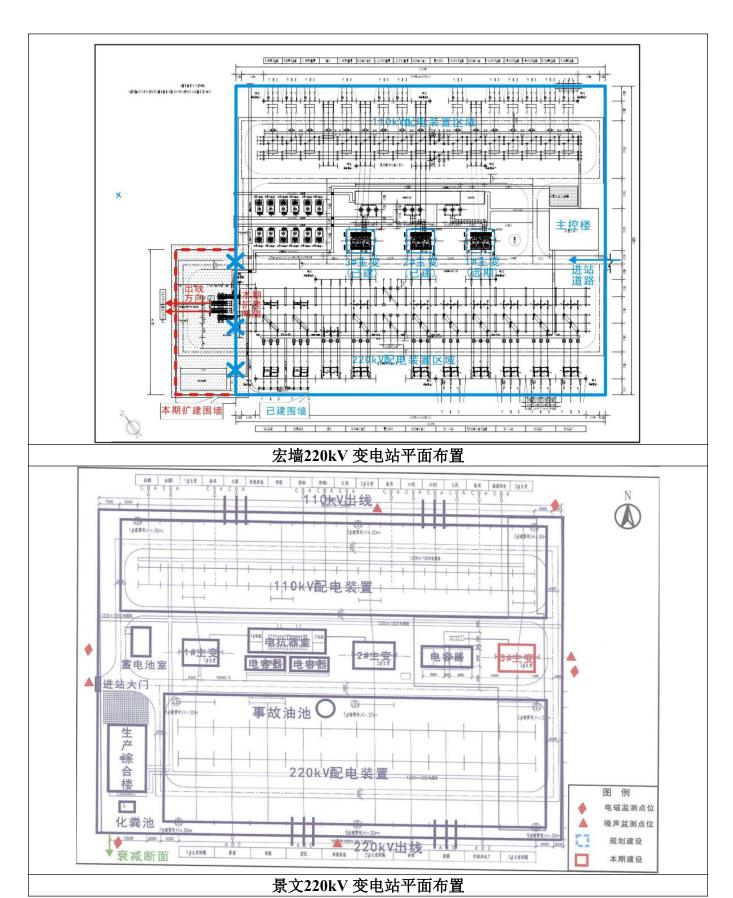


图 3-1 本项目与类比变电站平面布置对比图

由表 3-1 和图 3-1 对比资料可以看出,类比变电站与本项目变电站在电压等级、主变布置方式、电气形式以及母线形式方面均一致;在电气总平面布置、周边环境概况以及气候环境方面类似;此外本项目变电站主变容量更小,占地面积更大,本期出线方式更优,且主变距离围墙距离以及配电装置距离围墙距离更远,理论上类比变电站电磁环境影响更大,综合考虑上述因素,本评价选择景文 220kV 变电站作为类比对象是可行的。

3.1.3 类比监测因子

工频电场、工频磁场。

3.1.4 监测方法及仪器

采用《交流输变电工程电磁环境监测方法(试行)》(HJ681-2013)中所规定的工频电场、工频磁场的测试方法。监测所用仪器具体情况见表 3-2。

3.1.5 类比变电站监测布点情况

根据湖北君邦环境技术有限责任公司武汉环境检测分公司《开封兰考 220kV 景文变 3 号主变扩建工程检测报告》((2020)环监(电磁-电力)字第(273)号),在景文 220kV 变电站四侧厂界各布设一个监测点位,监测距地面 1.5m 高处工频电场、工频磁感应强度,在变电站南侧设置了衰减断面,具体监测布点见图 3-1。

3.1.6 类比变电站监测条件及运行工况

2020年10月16日,湖北君邦环境技术有限责任公司武汉环境检测分公司对景文220kV变电站进行了现场监测,监测时的气候条件及监测仪器见表3-2。

监测单位	湖北君邦环境技术有限责任公司武汉环境检测分公司				
监测时间	2020年10月16日				
监测仪器	SEM-600 工频场强计,仪器编号 G-0086&S-0086,有效期至 2020.8.5-2021.8.4				
天气、环境温度	天气晴,6℃~20℃				
运行工况	主变	电压 (kV)	电流(A)	有功功率(MW)	有功功率(Mvar)
	1#主变	232.30	136.45	50.38	21.83
	2#主变	232.32	145.38	53.27	24.16
	3#主变	232.28	106.47	36.42	22.53

表 3-2 景文 220kV 变电站监测条件

3.1.7 监测结果类比分析

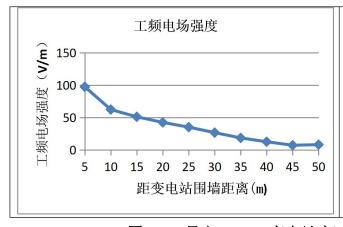

景文 220kV 变电站工频电场强度、工频磁感应强度监测结果见下表。

表 3-3 景文 220kV 变电站厂界工频电场强度、工频磁感应强度监测结果

监测点位		1.5m 高处工频电场 强度(V/m)	1.5m 高处工频磁感 应强度(μT)
EB1	变电站东侧围墙外 5m	11.9	0.104
EB2	变电站南侧围墙外 5m	97.5	0.188
EB12	变电站西侧围墙外 5m	48.1	0.121
EB13	变电站北侧围墙外 5m	64.8	0.135

表 3-4 景文 220kV 变电站工频电场强度、工频磁感应强度衰减断面监测结果

监测点位		1.5m 高处工频电场 强度(V/m)	1.5m 高处工频磁感 应强度(μT)	
EB2		变电站南侧围墙外 5m	97.5	0.188
EB3		变电站南侧围墙外 10m	62.4	0.087
EB4		变电站南侧围墙外 15m	51.2	0.053
EB5		变电站南侧围墙外 20m	42.5	0.044
EB6	衰减断面	变电站南侧围墙外 25m	35.2	0.041
EB7	次映町田	变电站南侧围墙外 30m	26.7	0.028
EB8		变电站南侧围墙外 35m	18.5	0.033
EB9		变电站南侧围墙外 40m	12.6	0.029
EB10		变电站南侧围墙外 45m	7.2	0.023
EB11		变电站南侧围墙外 50m	8.1	0.017

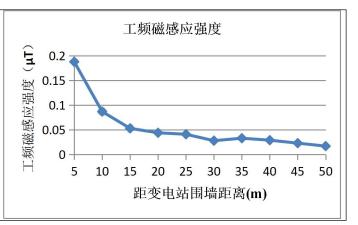


图 3-2 景文 220kV 变电站衰减断面工频电磁场随距离的变化规律图

在监测工况条件下,类比变电站四侧厂界监测点位工频电场强度在(11.9~97.5)V/m 之间,工频磁感应强度在(0.104~0.188)μT 之间,均低于《电磁环境控制限值》(GB 8702-2014)4000V/m 和 100μT 标准要求,类比变电站产生的各项污染物均可满足国家相关标准要求。

变电站衰减断面处工频电场强度在($7.2\sim97.5$)V/m之间,最大值出现在变电站南侧围墙外 5m 处,工频磁感应强度在($0.017\sim0.188$) μ T 之间,最大值出现在变电站南侧围墙外 5m

处,工频电场强度、工频磁感应强度整体随着距离的增大而逐渐衰减,且小于《电磁环境控制限值》(GB8702-2014)中 4000V/m 及 100μT 的公众曝露控制限值要求。

综上,由电磁场的衰减规律和类比监测分析可知,本项目宏墙 220kV 变电站本期间隔扩建 完成后,其产生的工频电场强度、工频磁感应强度均可满足国家相关标准要求,工程对周边环 境的影响可以控制在国家相关标准允许范围内。

3.2 新建架空线路电磁环境影响预测分析

3.2.1 预测思路

(1) 220kV 线路部分架设情况

新建 220kV 宏水牵 I、II 线为两条 220kV 单回架空线路,导线存在三角排列和垂直排列两种排列方式。两条单回线路基本并行走线,其中垂直排列段并行间距约 14m~30m(线路中心间距);三角排列段并行间距约 22m~100m(线路中心间距),并行间距超出 100m 的均为三角排列段。

预测思路:

- 1) 三角排列段预测并行段和单回架设段,杆塔选择最不利塔型。因两条线路最不利塔型相同,导线型号相同,仅导线对地最低高度不同,因此本次评价对单回架设段从最不利角度选取两条线路中导线对地最低(约 14m)的线路进行电磁预测。对并行段电磁预测从最不利角度选取最小并行间距(中心线间距约 22m),导线对地高度分别选择线路对应最低导线对地高度(I 线约 19m,II 线约 14m)。
- 2)垂直排列段并行间距均较小,建模视为同塔双回线路进行预测,不考虑单回架空部分。杆塔选择最不利塔型,导线对地高度分别选择线路对应最低导线对地高度(I 线约 19m, II 线约 14m)。

(2) 110kV 线路部分架设情况

110kV 大宏线迁改工程为单回架空,全线采用垂直排列(双回塔单边挂线),线路与拟建220kV 宏水牵 I 线并行走线约 0.65km,并行间距约 38m~87m(线路中心间距),因此,预测考虑并行线路及 110kV 单回架空 2 种情况。

预测思路:并行段电磁环境影响预测从最不利角度选取最小并行间距,最低导线对地高度以及最不利塔型进行并行线路预测。单回段从最不利角度选取最不利塔型及最低导线对地高度进行预测。

图 3-3 本项目新建线路沿线并行情况

3.2.2 预测因子

工频电场、工频磁场。

3.2.3 预测模式

本次评价所采取的预测模型引用自《环境影响评价技术导则输变电》(HJ24-2020)中附录 C 高压交流架空输电线路下空间工频电场强度的计算、附录 D 高压交流架空输电线路下空间工 频磁感应强度的计算进行预测。

3.2.4 工频电场强度的计算

(1) 计算单位长度导线上等效电荷

高压输电线上的等效电荷是线电荷,由于高压输电线半径r远远小于架设高度h,所以等效电荷的位置可以认为是在输电导线的几何中心。

设输电线路为无限长并且平行于地面,地面可视为良导体,利用镜像法计算输电线上的等效电荷。

为了计算多导线线路中导线上的等效电荷,可写出下列矩阵方程:

$$\begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1n} \\ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2n} \\ \vdots & & & & \\ \lambda_{n1} & \lambda_{n2} & \cdots & \lambda_{nn} \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_n \end{bmatrix} \dots$$
(C1)

式中: U—各导线对地电压的单列矩阵:

O—各导线上等效电荷的单列矩阵;

 λ —各导线的电位系数组成的 n 阶方阵(n 为导线数目)。

[*U*]矩阵可由输电线的电压和相位确定,从环境保护考虑以额定电压的 1.05 倍作为计算电压。

由三相 220kV 和 110kV (线间电压)回路(图 C.1 所示)各相的相位和分量,则可计算各导线对地电压为:

$$|U_A| = |U_B| = |U_C| = \frac{220 \times 1.05}{\sqrt{3}} = 133.4(kV)$$

$$|U_A| = |U_B| = |U_C| = \frac{110 \times 1.05}{\sqrt{3}} = 66.7(kV)$$

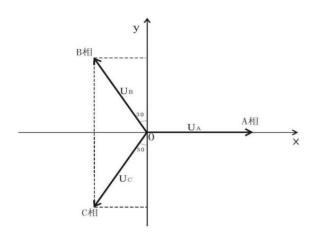


图 C.1 对地电压计算图

对于 220kV 三相导线各导线对地电压分量为:

$$U_a = (133.4 + j0)kV$$

$$U_b = (-66.7 + j115.5)kV$$

$$U_c = (-66.7 - j115.5)kV$$

对于 110kV 三相导线各导线对地电压分量为:

$$U_a = (66.7 + j0)kV$$

$$U_b = (-33.3 + j57.8)kV$$

$$U_c = (-33.3 - j57.8)kV$$

[λ]矩阵由镜像原理求得。地面为电位等于零的平面,地面的感应电荷可由对应地面导线的镜像电荷代替,用 i, j, …表示相互平行的实际导线,用 i', j', … 表示它们的镜像,如图 C.2 所示,电位系数可写为:

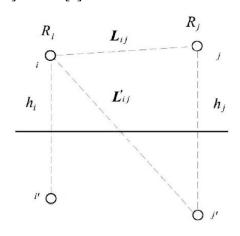
$$\lambda_{ii} = \frac{1}{2\pi\varepsilon_0} \ln \frac{2h_i}{R_i}...$$

$$\lambda_{ij} = \frac{1}{2\pi\varepsilon_0} \ln \frac{L'_{ij}}{L_{ij}}...$$

$$\lambda_{ij} = \lambda_{ji}...$$
(C2)
$$(C3)$$

式中: ^{\$0}——真空介电常数,;

 R_i ——输电导线半径,对于分裂导线可用等效单根导线半径代入,的计算式为:


$$R_i = R \cdot \sqrt[n]{\frac{nr}{R}}....(C5)$$

式中: R——分裂导线半径, m; (如图 C.3)

n——次导线根数;

r——次导线半径,m。

由[U]矩阵和 $[\lambda]$ 矩阵,利用式 (C1)即可解出[Q]矩阵。

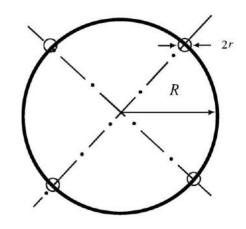


图 C.2 电位系数计算图

图 C.3 等效半径计算图

对于三相交流线路,由于电压为时间向量,计算各相导线的电压时要用复数表示:

$$\overline{U}_i = U_{iR} + jU_{iI}.....$$
 (C6)

相应地电荷也是复数量:

$$\overline{Q}_i = Q_{iR} + jQ_{iI}....(C7)$$

式(C1)矩阵关系即表示了复数量的实部和虚部两部分:

$$[U_R] = [\lambda][Q_R].....(C8)$$

$$[U_I] = [\lambda][Q_I]....(C9)$$

(2) 计算由等效电荷产生的电场

为计算地面电场强度的最大值,通常取设计最大弧垂时导线的最小对地高度。

当各导线单位长度的等效电荷量求出后,空间任意一点的电场强度可根据叠加原理计算得出,在 (x, y) 点的电场强度分量 E_x 和 E_y 可表示为:

$$Ex = \frac{1}{2\pi\varepsilon_0} \sum_{i=1}^{m} Q_i \left(\frac{x - x_i}{L_i^2} - \frac{x - x_i}{(L_i')^2} \right). \tag{C10}$$

$$E_{y} = \frac{1}{2\pi\varepsilon_{0}} \sum_{i=1}^{m} Q_{i} \left(\frac{y - y_{i}}{L_{i}^{2}} - \frac{y + y_{i}}{(L_{i}^{\prime})^{2}} \right).$$
 (C11)

式中: x_i 、 y_i —导线 i 的坐标(i=1、2、...m);

m-导线数目:

 L_i 、 L'_i —分别为导线 i 及其镜像至计算点的距离,m。

对于三相交流线路,可根据式(C8)和(C9)求得的电荷计算空间任一点电场强度的水平和垂直分量为:

$$\overline{E_x} = \sum_{i=1}^{m} E_{ixR} + j \sum_{i=1}^{m} E_{ixI} = E_{xR} + j E_{xI}......(C12)$$

$$\overline{E_{\nu}} = \sum_{i=1}^{m} E_{i\nu R} + j \sum_{i=1}^{m} E_{i\nu I} = E_{\nu R} + j E_{\nu I} \dots (C13)$$

式中: ExR——由各导线的实部电荷在该点产生场强的水平分量;

 E_{xt} —由各导线的虚部电荷在该点产生场强的水平分量;

 E_{vR} —由各导线的实部电荷在该点产生场强的垂直分量;

 E_{yl} —由各导线的虚部电荷在该点产生场强的垂直分量;

该点的合成场强为:

$$\overline{E} = (E_{xR} + jE_{xI})\bar{x} + (E_{yR} + jE_{yI})\bar{y} = \bar{E_x} + \bar{E_y}.....$$
(C14)
式中:

$$E_x = \sqrt{E_{xR}^2 + E_{xI}^2}$$
.....(C15)

$$E_y = \sqrt{E_{yR}^2 + E_{yI}^2}$$
.....(C16)

在地面处(y=0)电场强度的水平分量,即 $E_x=0$ 。

3.2.5 工频磁场计算公式

根据《环境影响评价技术导则输变电》(HJ 24-2020)的附录 D 计算高压送电线路下空间工频磁感应强度。

由于工频电磁场具有准静态特性,线路的磁场仅由电流产生。应用安培定律,将计算结果按矢量叠加,可得出导线周围的磁场强度。

和电场强度计算不同的是关于镜像导线的考虑,与导线所处高度相比这些镜像导线位于地下很深的距离 *d*:

$$d = 660 \sqrt{\frac{\rho}{f}} \text{(m)}....$$
 (D1)

式中: ρ ——大地电阻率, Ω ·m;

f——频率,Hz。

在一般情况下,可只考虑处于空间的实际导线,忽略它的镜像进行计算,其结果已足够符合实际。如图 D.1,不考虑导线 i 的镜像时,可计算其在 A 点产生的磁场强度:

$$H = \frac{I}{2\pi\sqrt{h^2 + L^2}} (A/m)...$$
 (D1)

式中: I——导线 i 中的电流值,A;

h——导线与预测点的高差,m;

L——导线与预测点水平距离,m。

对于三相线路,由相位不同形成的磁场强度水平和垂直分量都应分别考虑电流的相角,按相位 矢量来合成。合成的旋转矢量在空间的轨迹是一个椭圆。

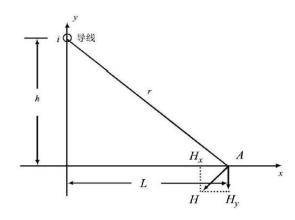


图 D.1 磁场向量图

3.2.6 新建 220kV 单回架空线路(三角排列)非并行段电磁环境影响评价

3.2.6.1预测塔型选择

根据《环境影响评价技术导则 输变电》(HJ24-2020)中"8.1.2.3章节",在预测塔型选择时,可主要考虑线路经过居民区时的塔型,也可按保守原则选择电磁环境影响最大的塔型。

经对本项目所有新建塔型进行初步预测,本项目新建220kV 单回架空线路(三角排列)非并行段在选用22N-DJ 塔进行预测时,工频电场强度预测值高于其他塔型,本评价按保守原则选择电磁环境影响最大的型塔进行电磁环境影响预测。塔形预测参数详情见表3-5。

3.2.6.2预测高度的选取

根据设计单位提供平断面图,本项目新建220kV 宏水牵 I 线最低导线对地高度为19m,新建220kV 宏水牵 II 线最低导线对地高度为14m,根据现场调查,线路沿线电磁环境保护目标建筑高度均未超过14m,本评价从最不利角度对新建220kV 单回架空线路(三角排列)非并行段电磁环境影响预测仅对最低导线对地高度14m 进行电磁预测,详见附图5。

3.2.6.3 电流的选取

根据设计资料,本项目新建两条220kV单回架空线路均选用 JL3/G1A-400/35型导线,本评价线路计算电流选取裸导线的安全载流量(持续容许负荷 A)进行保守预测,本评价选取最不利情况下 JL3/G1A-400/35型导线裸导线安全载流量794A 进行预测。预测参数选取见表3-5。

表 3-5 新建 220kV 单回架空线路 (三角排列) 非并行段预测参数一览表

 架设回路数 与线型号 线路电压[□] 520kV (环保计算电压 231kV) 导线排列方式 单回搭, 三角排列 分裂数 单导线 线路计算电流 (A) 794 (裸导线的安全载流量) 导线半径 (cm) 1.341 下相线导线对地最小距离 (m) [®] 预测坐标 14 B (0, 19): A (-7.5, 14): C (5.5, 14) 	名称	新建 220kV 单回架空线路(三角排列)非并行段
线路电压 [©] 220kV (环保计算电压 231kV) 早回搭, 三角排列 単回搭, 三角排列 単导线 後路计算电流 (A) 794 (裸导线的安全载流量) 日4 日4 日4 日4 日4 日4 日4 日	架设回路数	单回
导线排列方式 单回塔, 三角排列 分裂数 单导线 线路计算电流 (A) 794 (裸导线的安全载流量) 导线半径 (cm) 1.341 下相线导线对地最小距离 (m) ^② 14 B (0, 19); A (-7.5, 14); C (5.5, 14)	导线型号	JL3/G1A-400/35 型导线
	线路电压ΰ	220kV (环保计算电压 231kV)
线路计算电流 (A)	导线排列方式	单回塔,三角排列
导线半径 (cm) 1.341 下相线导线对地最小距离 (m) ® 14 B (0, 19); A (-7.5, 14); C (5.5, 14) B B T B B B T B A B	分裂数	单导线
下相线导线对地最小距离 (m) [®] B (0, 19) ; A (-7.5, 14) ; C (5.5, 14) B (0, 19) ; A (-7.5, 14) ; C (5.5, 14)	线路计算电流(A)	794 (裸导线的安全载流量)
預測坐标 B (0, 19); A (-7.5, 14); C (5.5, 14)	导线半径 (cm)	1.341
A (-7.5, 14); C (5.5, 14) B 预测塔型	下相线导线对地最小距离(m) ^②	14
1000 	预测坐标	
22N-DJ	预测塔型	000g1 0000 0001 0000 0001 0000 0000 000

备注:①环保计算电压为额定电压的 1.05 倍;②根据设计单位提供的平断面确定。

3.1.6.4 预测内容

根据选择的塔型、电压、电流及最低导线对地距离,进行工频电场、工频磁场预测计算,以确定本工程工频电场、工频磁场影响程度及范围,同时,针对评价范围内距离线路最近的环

境保护目标进行预测计算。

3.1.6.5 新建 220kV 单回架空线路(三角排列)非并行段预测结果及分析

(1) 工频电场强度及工频磁感应强度预测结果

以最不利塔型 22N-DJ 为预测塔型, 预测导线对地高度从 14m 开始计算, 以弧垂最大处线路中心的地面投影为预测原点,沿垂直于线路方向进行, 预测点间距为 5m(距线路中心投影处15m 以内预测点间距为 1m),顺序至边导线外 40m 为止,预测离地面 1.5m 处的工频电场强度、工频磁感应强度。计算结果见下表及图。

表 3-6 新建 220kV 单回架空线路(三角排列)非并行段预测结果

ļ		2	2N-DJ
导线高	i度 (m)		14m
距线路中心距离	距边导线距离	离地面 1.5m 处工频电场强度 (单位: V/m)	离地面 1.5m 处工频磁感应强度 (单位: μT)
-50	边导线外 42.5m	104.2	0.724
-45	边导线外 37.5m	136.7	0.889
-40	边导线外 32.5m	185.2	1.114
-35	边导线外 27.5m	260.1	1.432
-30	边导线外 22.5m	379.5	1.896
-25	边导线外 17.5m	573.0	2.594
-20	边导线外 12.5m	876.9	3.664
-15	边导线外 7.5m	1273.5	5.243
-14	边导线外 6.5m	1347.9	5.618
-13	边导线外 5.5m	1412.8	6.006
-12	边导线外 4.5m	1463.6	6.400
-11	边导线外 3.5m	1495.0	6.795
-10	边导线外 2.5m	1502.1	7.180
-9	边导线外 1.5m	1480.8	7.547
-8	边导线外 0.5m	1428.0	7.887
-7	边导线内	1343.1	8.190
-6	边导线内	1227.7	8.451
-5	边导线内	1086.3	8.665
-4	边导线内	926.7	8.830
-3	边导线内	760.0	8.943
-2	边导线内	602.1	9.007
-1	边导线内	490.7	9.022
0	边导线内	549.1	8.987
1	边导线内	692.7	8.904
2	边导线内	851.5	8.772
3	边导线内	1006.4	8.592
4	边导线内	1145.0	8.365
5	边导线内	1259.1	8.093
6	边导线外 0.5m	1343.8	7.782
7	边导线外 1.5m	1397.2	7.437
8	边导线外 2.5m	1420.0	7.067

Į.	 若型	22N-DJ							
导线高	5度 (m)		14m						
距线路中心距离	距边导线距离	离地面 1.5m 处工频电场强度 (单位: V/m)	离地面 1.5m 处工频磁感应强度 (单位: μT)						
9	边导线外 3.5m	1414.9	6.680						
10	边导线外 4.5m	1386.0	6.287						
11	边导线外 5.5m	1338.2	5.894						
12	边导线外 6.5m	1276.6	5.509						
13	边导线外 7.5m	1205.7	5.138						
14	边导线外 8.5m	1129.7	4.784						
15	边导线外 9.5m	1051.8	4.451						
20	边导线外 14.5m	699.0	3.109						
25	边导线外 19.5m	457.6	2.226						
30	边导线外 24.5m	308.4	1.649						
35	边导线外 29.5m	216.2	1.262						
40	边导线外 34.5m	157.7	0.993						
45	边导线外 39.5m	119.1	0.800						
50	边导线外 44.5m	92.6	0.658						
最	:大值	1502.1	9.022						
标准限值(公分	众曝露控制限值)	4000 100							

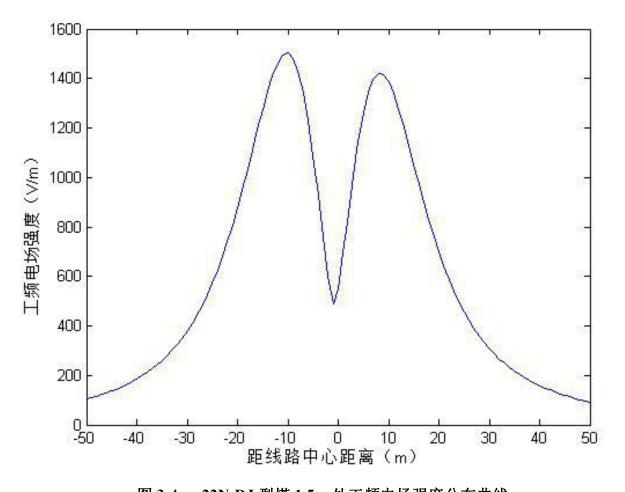


图 3-4 22N-DJ 型塔 1.5m 处工频电场强度分布曲线

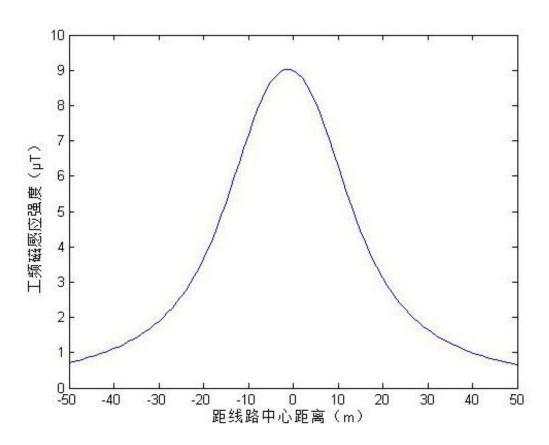


图 3-5 22N-DJ 型塔 1.5m 处工频磁感应强度分布曲线

经预测,新建 220kV 单回架空线路(三角排列)非并行段在采用最不利塔型 22N-DJ型塔,导线 JL3/G1A-400/35,下相线导线对地高度为 14m 时,线下地面 1.5m 高处工频电场强度最大值为 1502.1 V/m,最大值出现在距线路中心-10m 处,工频磁感应强度最大值为 9.022 μT,最大值出现在距线路中心-1m 处,满足《电磁环境控制限值》(GB 8702-2014)规定的4000V/m 和 100μT 标准要求。

因线路沿线存在多条线路并行,线路沿线工频电场强度现状监测值最大为 1855V/m,从最不利角度分析,新建 220kV 单回架空线路(三角排列)非并行段地面 1.5m 高处工频电场强度最大预测值(1502.1 V/m)叠加最大现状监测值后仍远小于 10kV/m,因此新建 220kV 单回架空线路(三角排列)非并行段经过耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所时能够满足电磁环境限值 10kV/m 标准要求。

(2) 工频电场强度及工频磁感应强度空间分布

本评价对新建 220kV 单回架空线路(三角排列)非并行段在采用最不利塔型 22N-DJ 型塔、导线 JL3/G1A-400/35,导线对地 14m 时进行了空间分布预测,工频电磁场空间分布详见下表及图。

表 3-7 新建 220kV 单回架空线路(三角排列)非并行段导线对地 14m 工频电场强度空间分布(kV/m)

_								• •	-/ 14 4 11 /		/ 1 14		• • •									
XY	1.5	4.5	5	6	7	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
-45	0.137	0.136	0.135	0.134	0.134	0.131	0.130	0.129	0.127	0.125	0.124	0.122	0.120	0.118	0.116	0.114	0.112	0.110	0.107	0.105	0.103	0.101
-40	0.185	0.183	0.183	0.182	0.180	0.177	0.175	0.173	0.170	0.168	0.165	0.162	0.159	0.156	0.153	0.150	0.146	0.143	0.140	0.136	0.132	0.129
-30	0.380	0.376	0.375	0.372	0.369	0.362	0.357	0.351	0.346	0.339	0.332	0.325	0.316	0.308	0.299	0.290	0.280	0.270	0.261	0.251	0.241	0.231
-20	0.877	0.892	0.896	0.903	0.910	0.920	0.921	0.918	0.911	0.897	0.881	0.857	0.829	0.796	0.760	0.722	0.682	0.642	0.602	0.562	0.525	0.488
-15	1.274	1.367	1.392	1.447	1.511	1.654	1.725	1.792	1.830	1.849	1.835	1.787	1.710	1.610	1.495	1.375	1.255	1.141	1.033	0.934	0.844	0.762
-13	1.413	1.571	1.614	1.715	1.837	2.144	2.320	2.513	2.649	2.753	2.764	2.688	2.532	2.326	2.101	1.878	1.669	1.480	1.311	1.162	1.031	0.917
-12	1.464	1.660	1.715	1.846	2.009	2.444	2.716	3.040	3.292	3.514	3.564	3.451	3.197	2.871	2.534	2.218	1.937	1.692	1.480	1.298	1.140	1.005
-11	1.495	1.734	1.801	1.966	2.176	2.774	3.186	3.730	4.210	4.698	4.846	4.645	4.168	3.608	3.083	2.630	2.251	1.935	1.670	1.448	1.260	1.100
-10	1.502	1.784	1.865	2.064	2.324	3.115	3.717	4.617	5.558	6.745	7.200	6.703	5.632	4.592	3.758	3.113	2.610	2.208	1.881	1.612	1.389	1.202
-9	1.481	1.804	1.898	2.130	2.439	3.426	4.247	5.648	7.473	10.842	12.783	10.740	7.791	5.810	4.531	3.651	3.005	2.507	2.112	1.790	1.527	1.309
-8	1.428	1.789	1.894	2.156	2.505	3.653	4.659	6.545	9.533	19.553	41.019	18.691	10.288	7.034	5.305	4.205	3.425	2.831	2.361	1.983	1.674	1.422
-7	1.343	1.739	1.853	2.137	2.515	3.748	4.826	6.845	10.049	20.818	44.069	20.305	11.310	7.820	5.951	4.742	3.863	3.180	2.633	2.190	1.830	1.539
-6	1.228	1.655	1.777	2.077	2.470	3.706	4.726	6.467	8.755	13.083	15.848	13.778	10.370	8.014	6.431	5.266	4.337	3.570	2.935	2.415	1.996	1.660
-5	1.086	1.545	1.674	1.986	2.385	3.567	4.458	5.800	7.243	9.218	10.292	10.160	9.123	7.948	6.865	5.858	4.907	4.037	3.284	2.664	2.170	1.781
-4	0.927	1.421	1.557	1.880	2.280	3.389	4.147	5.167	6.118	7.265	7.964	8.316	8.283	7.999	7.489	6.706	5.701	4.647	3.705	2.941	2.350	1.900
-3	0.760	1.299	1.443	1.778	2.180	3.223	3.878	4.683	5.364	6.139	6.689	7.261	7.859	8.416	8.665	8.208	6.989	5.509	4.221	3.242	2.528	2.008
-2	0.602	1.200	1.354	1.701	2.104	3.104	3.694	4.373	4.902	5.453	5.862	6.545	7.742	9.397	11.131	11.483	9.389	6.756	4.819	3.538	2.683	2.093
-1	0.491	1.152	1.311	1.664	2.068	3.052	3.618	4.248	4.711	5.124	5.311	5.942	7.861	10.992	16.638	22.015	14.362	8.319	5.371	3.763	2.784	2.142
0	0.549	1.170	1.327	1.676	2.079	3.074	3.657	4.319	4.817	5.273	5.489	6.184	8.334	12.299	23.436	NaN	20.101	9.189	5.589	3.826	2.800	2.142
1	0.693	1.247	1.394	1.731	2.133	3.167	3.811	4.593	5.240	5.956	6.495	7.372	9.018	11.928	17.391	22.432	14.387	8.241	5.283	3.684	2.719	2.089
2	0.852	1.354	1.492	1.816	2.215	3.313	4.059	5.061	5.999	7.166	7.999	8.794	9.666	10.812	12.000	11.820	9.370	6.607	4.653	3.388	2.557	1.989
3	1.006	1.469	1.598	1.909	2.306	3.476	4.357	5.690	7.143	9.213	10.523	10.872	10.482	10.000	9.425	8.404	6.878	5.286	3.986	3.031	2.350	1.860
4	1.145	1.572	1.694	1.992	2.382	3.605	4.616	6.355	8.669	13.158	16.283	14.673	11.596	9.473	7.978	6.691	5.462	4.341	3.407	2.679	2.129	1.715
5	1.259	1.653	1.766	2.047	2.421	3.641	4.711	6.730	9.961	20.945	45.138	21.362	12.295	8.799	6.887	5.565	4.514	3.643	2.929	2.360	1.915	1.569
6	1.344	1.702	1.806	2.064	2.409	3.544	4.543	6.428	9.436	19.605	41.709	19.376	10.902	7.616	5.841	4.669	3.792	3.095	2.532	2.078	1.716	1.427
7	1.397	1.717	1.809	2.038	2.343	3.319	4.134	5.534	7.373	10.809	12.881	10.972	8.077	6.105	4.809	3.893	3.197	2.644	2.196	1.832	1.535	1.294
8	1.420	1.698	1.777	1.974	2.230	3.011	3.609	4.509	5.459	6.679	7.187	6.755	5.731	4.713	3.880	3.221	2.694	2.264	1.910	1.616	1.373	1.172
9	1.415	1.650	1.716	1.878	2.085	2.676	3.085	3.629	4.115	4.621	4.794	4.625	4.177	3.634	3.115	2.660	2.271	1.942	1.663	1.427	1.229	1.061
10	1.386	1.579	1.633	1.762	1.922	2.351	2.621	2.945	3.201	3.433	3.496	3.401	3.163	2.849	2.519	2.204	1.920	1.670	1.452	1.263	1.100	0.961
11	1.338	1.493	1.535	1.634	1.755	2.057	2.232	2.425	2.563	2.674	2.692	2.625	2.479	2.281	2.062	1.841	1.633	1.442	1.271	1.120	0.987	0.871
12	1.277	1.397	1.429	1.504	1.592	1.801	1.912	2.026	2.101	2.153	2.151	2.098	1.999	1.865	1.712	1.553	1.398	1.251	1.117	0.995	0.887	0.791
13	1.206	1.297	1.321	1.376	1.439	1.580	1.650	1.717	1.756	1.777	1.766	1.722	1.648	1.552	1.441	1.323	1.206	1.092	0.986	0.888	0.799	0.719
15	1.052	1.101	1.113	1.140	1.170	1.229	1.255	1.275	1.282	1.277	1.260	1.227	1.181	1.125	1.060	0.990	0.919	0.848	0.779	0.714	0.654	0.597
20	0.699	0.704	0.705	0.706	0.707	0.705	0.702	0.695	0.687	0.674	0.661	0.644	0.624	0.601	0.577	0.551	0.524	0.497	0.469	0.443	0.416	0.391
30	0.308	0.305	0.304	0.302	0.300	0.294	0.290	0.285	0.281	0.276	0.271	0.265	0.259	0.253	0.246	0.239	0.232	0.225	0.218	0.211	0.204	0.196
40	0.158	0.156	0.156	0.155	0.154	0.151	0.150	0.148	0.146	0.144	0.142	0.140	0.138	0.136	0.133	0.131	0.128	0.125	0.123	0.120	0.117	0.115
45	0.119	0.118	0.118	0.117	0.117	0.115	0.114	0.113	0.112	0.110	0.109	0.108	0.106	0.105	0.103	0.102	0.100	0.098	0.096	0.095	0.093	0.091
A 34 ·	マル肥を	<u> 4a 4</u>	AA UC 190	*7 ML	ᄩᄚᄔᆄᇎ	= 44 == 100																

备注: X 为距线路中心的距离, Y 为距离地面的高度。

表 3-8 新建 220kV 单回架空线路(三角排列)非并行段导线对地 14m 工频磁感应强度空间分布(µT)

_	<u>.</u>		4717-						11 /1 14	124 4 -24						•		
XY	1.5	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
-45	0.889	0.955	0.960	0.964	0.967	0.969	0.970	0.970	0.968	0.966	0.962	0.958	0.952	0.946	0.938	0.930	0.921	0.911
-40	1.114	1.222	1.230	1.237	1.242	1.245	1.247	1.246	1.244	1.240	1.234	1.227	1.218	1.207	1.195	1.181	1.167	1.151
-30	1.896	2.243	2.273	2.300	2.316	2.329	2.334	2.333	2.326	2.312	2.292	2.265	2.234	2.197	2.157	2.112	2.064	2.013
-20	3.664	5.364	5.558	5.739	5.855	5.951	5.988	5.984	5.931	5.834	5.698	5.528	5.331	5.116	4.889	4.655	4.419	4.186
-15	5.243	9.930	10.701	11.491	12.039	12.513	12.695	12.656	12.374	11.892	11.268	10.561	9.819	9.078	8.362	7.685	7.054	6.472
-13	6.006	13.278	14.802	16.512	17.797	18.974	19.421	19.270	18.504	17.313	15.912	14.464	13.067	11.769	10.589	9.528	8.581	7.739
-12	6.400	15.451	17.646	20.289	22.421	24.484	25.271	24.928	23.496	21.455	19.241	17.109	15.168	13.445	11.933	10.611	9.456	8.450
-11	6.795	17.969	21.143	25.347	29.119	33.151	34.724	33.823	30.822	27.078	23.470	20.308	17.623	15.354	13.433	11.799	10.403	9.206
-10	7.180	20.743	25.258	32.001	39.098	48.248	52.173	49.234	41.915	34.610	28.681	24.057	20.413	17.483	15.081	13.085	11.412	10.002
-9	7.547	23.536	29.639	40.021	53.559	78.717	93.744	79.617	58.364	43.974	34.648	28.210	23.468	19.797	16.859	14.458	12.475	10.826
-8	7.887	25.964	33.462	47.483	69.695	144.206	304.621	139.848	77.559	53.433	40.618	32.472	26.679	22.260	18.752	15.909	13.582	11.668
-7	8.190	27.635	35.738	50.917	75.011	156.058	331.513	153.348	85.770	59.580	45.579	36.542	29.978	24.872	20.770	17.437	14.724	12.517
-6	8.451	28.386	36.117	49.349	66.762	99.720	120.776	104.986	79.047	61.160	49.196	40.433	33.474	27.728	22.964	19.058	15.896	13.357
-5	8.665	28.370	35.143	45.389	56.418	71.444	79.446	78.069	69.813	60.651	52.351	44.735	37.595	31.082	25.447	20.802	17.090	14.167
-4	8.830	27.916	33.648	41.398	48.632	57.232	62.255	64.374	63.500	60.890	56.784	50.818	43.286	35.418	28.393	22.695	18.282	14.916
-3	8.943	27.340	32.229	38.282	43.404	49.128	52.943	56.538	60.167	63.657	65.130	61.585	52.498	41.516	31.961	24.700	19.405	15.549
-2	9.007	26.868	31.212	36.253	40.194	44.245	47.011	51.132	58.796	70.263	82.691	85.169	69.725	50.324	36.057	26.619	20.323	15.988
-1	9.022	26.632	30.756	35.388	38.810	41.855	43.188	46.124	58.472	80.879	122.005	161.431	105.515	61.311	39.756	27.988	20.834	16.145
0	8.987	26.684	30.929	35.769	39.390	42.584	43.702	45.805	60.673	89.306	170.129	NaN	146.488	67.181	41.015	28.202	20.743	15.957
1	8.904	26.996	31.715	37.447	42.132	47.022	50.147	54.933	65.708	86.334	125.749	162.414	104.419	59.992	38.593	27.009	20.006	15.432
2	8.772	27.452	32.976	40.377	47.223	55.415	60.770	65.380	70.702	78.465	86.884	85.641	68.029	48.103	33.976	24.818	18.782	14.654
3	8.592	27.828	34.383	44.292	55.016	70.001	78.984	80.522	76.831	72.858	68.534	61.146	50.146	38.645	29.225	22.292	17.325	13.745
4	8.365	27.804	35.321	48.234	65.366	98.403	120.939	108.202	85.050	69.273	58.316	48.983	40.092	31.968	25.182	19.872	15.843	12.806
5	8.093	27.046	34.952	49.830	73.614	154.392	332.001	156.804	90.163	64.547	50.616	41.027	33.414	27.084	21.880	17.714	14.441	11.890
6	7.782	25.395	32.722	46.491	68.435	142.585	303.994	141.569	79.892	56.016	43.156	34.671	28.319	23.256	19.146	15.819	13.147	11.014
7	7.437	23.007	28.973	39.172	52.553	77.651	93.083	79.803	59.128	44.999	35.700	29.109	24.088	20.083	16.819	14.145	11.960	10.180
8	7.067	20.262	24.674	31.293	38.304	47.447	51.532	48.918	41.908	34.791	28.921	24.244	20.471	17.373	14.799	12.654	10.868	9.385
9	6.680	17.539	20.635	24.754	28.473	32.494	34.129	33.358	30.503	26.866	23.305	20.132	17.390	15.041	13.032	11.319	9.864	8.632
10	6.287	15.068	17.204	19.786	21.880	23.926	24.730	24.438	23.070	21.083	18.897	16.766	14.802	13.041	11.486	10.126	8.944	7.923
11	5.894	12.938	14.416	16.080	17.334	18.490	18.937	18.802	18.060	16.893	15.506	14.061	12.654	11.340	10.140	9.063	8.105	7.262
12	5.509	11.148	12.186	13.293	14.087	14.790	15.059	14.986	14.543	13.813	12.900	11.900	10.884	9.900	8.974	8.121	7.346	6.650
13	5.138	9.660	10.402	11.162	11.688	12.142	12.313	12.267	11.983	11.501	10.878	10.170	9.427	8.684	7.967	7.290	6.663	6.088
15	4.451	7.398	7.800	8.190	8.447	8.661	8.739	8.716	8.579	8.342	8.023	7.643	7.226	6.790	6.350	5.918	5.503	5.111
20	3.109	4.234	4.350	4.455	4.520	4.571	4.588	4.580	4.544	4.480	4.392	4.283	4.155	4.015	3.864	3.706	3.546	3.384
30	1.649	1.901	1.921	1.939	1.949	1.957	1.960	1.958	1.951	1.940	1.924	1.904	1.880	1.852	1.822	1.788	1.752	1.714
40	0.993	1.076	1.082	1.087	1.090	1.093	1.093	1.093	1.091	1.087	1.082	1.076	1.069	1.060	1.050	1.039	1.027	1.014
45	0.800	0.852	0.856	0.859	0.861	0.863	0.863	0.863	0.861	0.859	0.856	0.852	0.848	0.842	0.836	0.829	0.822	0.814
夕)汁. v	ᄮᄱᅜᄊᄱ	- AA HE	च्या चर्मा	HIC TOT LIL TO	*** = ==													

备注: X 为距线路中心的距离, Y 为距离地面的高度。

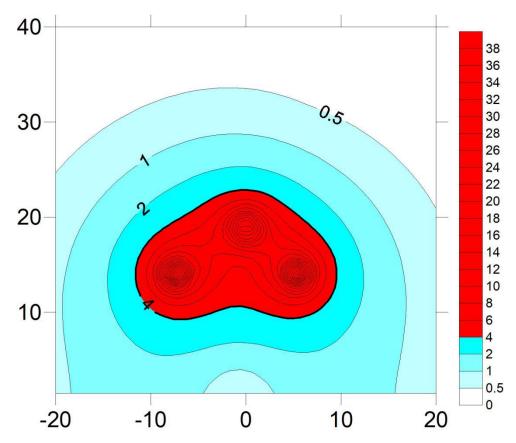


图 3-6 22N-DJ 型塔导线对地 14m 工频电场强度空间分布等值线图(kV/m)

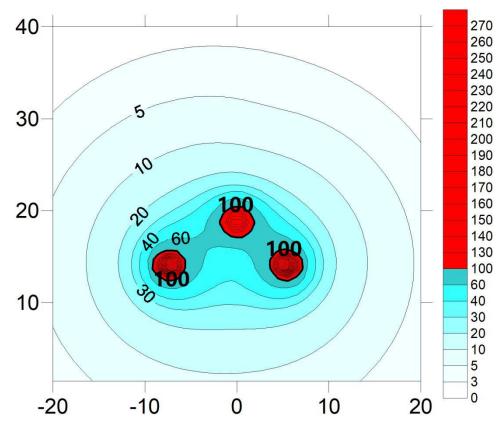


图 3-7 22N-DJ 型塔导线导线对地 14m 工频磁感应强度空间分布等值线图 (μT)

①工频电场空间分布分析

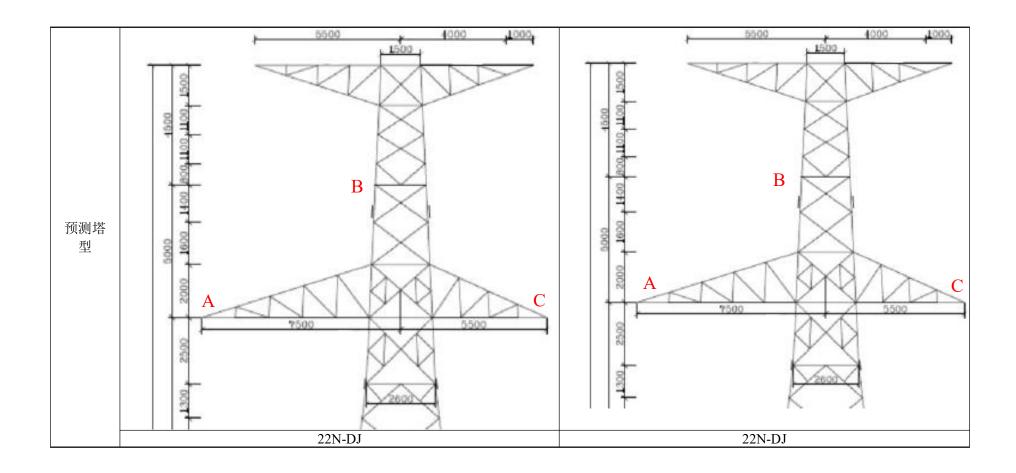
经预测,新建 220kV 单回架空线路(三角排列)非并行段在采用最不利塔型 22N-DJ、下相线导线对地高度 14m 时,在距离地面(9~23)m 高度范围内,距离导线地面投影中心(-12~10)m 以内的部分区域超过 4000V/m 标准限值,其他区域均满足标准要求。因此,以 22N-DJ 为预测塔型,在不考虑风偏的情况下,新建 220kV 单回架空线路(三角排列)非并行段需与沿线环境保护目标建筑的水平距离至少为 5m(12m-7.5m=4.5m,10m-5.5m=4.5m,取 5m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 5m(14m-9m=5m)(满足二者条件之一即可)。

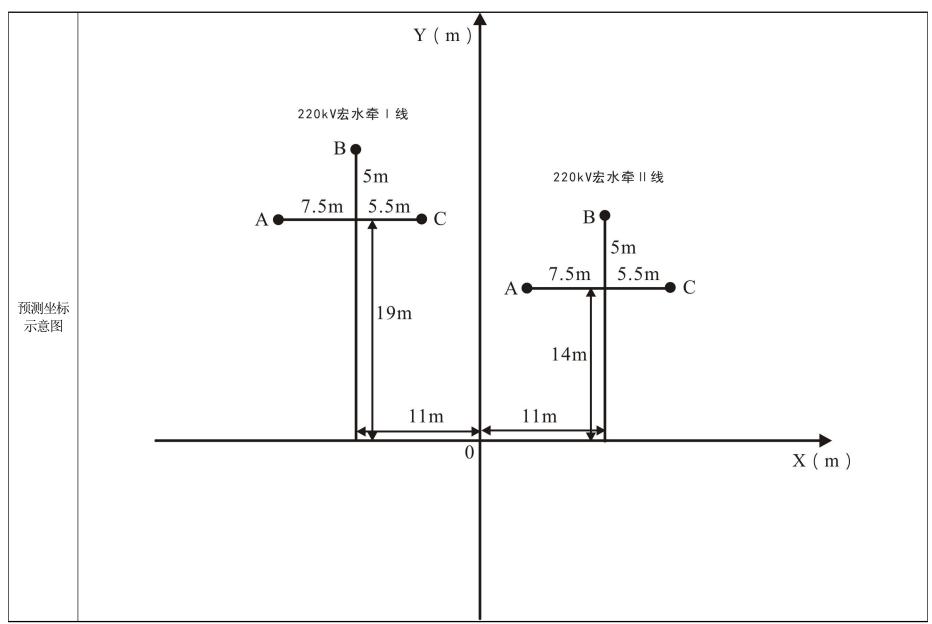
②工频磁场空间分布分析

经预测,新建 220kV 单回架空线路(三角排列)非并行段在采用最不利塔型 22N-DJ、下相线导线对地高度 14m 时,在距离地面(12~21)m 高度范围内,距离导线地面投影中心(-9~7)m 范围内的部分区域超过 100μT 标准限值,其他区域均满足标准要求。因此,在不考虑风偏的情况下,新建 220kV 单回架空线路(三角排列)非并行段需与沿线环境保护目标建筑的水平距离至少为 2m(9m-7.5m=1.5m,7m-5.5m=1.5m,取 2m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 2m(14m-12m=2m)(满足二者条件之一即可)。

③结论

综合上述分析,新建 220kV 单回架空线路(三角排列)非并行段在采用最不利塔型 22N-DJ 为预测塔型,在严格按照初步设计断面图的设计高度(导线对地不低于 14m)前提下,在不考虑风偏的情况下,新建 220kV 单回架空线路(三角排列)非并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 5m,或与下相导线线下垂直距离至少为 5m (满足二者条件之一即可)。


3.2.7 新建 220kV 单回架空线路 (三角排列) 并行段电磁环境影响评价


本次评价对新建两条220kV 单回架空线路(三角排列)并行段电磁环境影响预测从最不利角度选取并行间距最小,两条线路中导线对地高度最低以及最不利塔型进行预测。

(1) 预测参数

表 3-9 新建 220kV 单回架空线路(三角排列)并行段电磁环境预测参数一览表

名称	220kV 宏水牵 I 线	220kV 宏水牵 II 线
最小并 行间距	22m(线路中	心间距)
导线型 号	JL3/G1A-400/35 型导线	JL3/G1A-400/35 型导线
电压①	220kV(环保计算电压 231kV)	220kV(环保计算电压 231kV)
导线排 列方式	三角排列	三角排列
分裂数	单分裂	单分裂
线路计 算电流	794A (裸导线的安全载流量)	794A (裸导线的安全载流量)
导线半 径	1.341cm	1.341cm
导线对地 最小距离 ②	19m	14m
预测坐标 ®	B (-11, 24); A (-18.5, 19); C (-5.5, 19)	B (11, 19); A (3.5, 14); C (16.5, 14)

备注:①环保计算电压为额定电压的 1.05 倍;②根据现场调查及设计单位提供的断面图确定。③以并行间距中心为原点,预测塔型垂直间距为最小导线对地高度,水平间距增加并行间距。

(2) 预测结果

新建 220kV 单回架空线路(三角排列)并行段以 22N-DJ 为最不利塔型进行预测,以并行线路并行间距中心为预测原点,沿垂直于线路方向进行,预测点间距为 1m,至少预测至新建220kV 单回架空线路边导线外 40m 为止,预测离地面 1.5m 处的工频电场强度、工频磁感应强度。计算结果见下表及图。

表 3-10 新建 220kV 单回架空线路 (三角排列) 并行段电磁环境预测结果

距线路中心距离(m)	离地面 1.5m 处工频电场强度(V/m)	离地面 1.5m 处工频磁感应强度(μT)
-60	148.2	1.053
-59	155.3	1.089
-58	163	1.127
-57	171.1	1.167
-56	179.9	1.209
-55	189.2	1.253
-54	199.3	1.299
-53	210	1.348
-52	221.6	1.400
-51	233.9	1.454
-50	247.2	1.511
-49	261.5	1.572
-48	276.9	1.635
-47	293.4	1.702
-46	311.2	1.773
-45	330.2	1.848
-44	350.7	1.928
-43	372.7	2.011
-42	396.3	2.100
-41	421.6	2.193
-40	448.7	2.292
-39	477.6	2.395
-38	508.3	2.505
-37	540.9	2.619
-36	575.4	2.740
-35	611.7	2.866
-34	649.6	2.998
-33	689	3.135
-32	729.5	3.277
-31	770.7	3.424
-30	812.1	3.573
-29	853.1	3.726
-28	892.8	3.879
-27	930.2	4.032
-26	964.5	4.182
-25	994.3	4.327
-24	1018.5	4.464
-23	1036.1	4.591
-22	1046.1	4.704
-21	1047.6	4.800
-20	1040.4	4.878
-19	1024.5	4.933

距线路中心距离(m)	离地面 1.5m 处工频电场强度(V/m)	离地面 1.5m 处工频磁感应强度 (μT)
-18	1000.3	4.963
-17	969.1	4.967
-16	932.7	4.944
-15	893.2	4.893
-14	853.5	4.815
-13	816.6	4.711
-12	785.8	4.583
-11	763.6	4.436
-10	752.3	4.276
<u>-9</u>	752.7	4.111
-8	764.8	3.955
<u>-7</u>	787.8	3.823
-6	820.3	3.741
-5	860.7	3.736
<u>-3</u> -4	906.9	3.833
-3	955.9	4.039
-3 -2	1004.1	4.344
- <u>-</u> 2 -1	1046.6	4.728
0	1078.2	5.169
1	1078.2	5.644
2	1086.6	6.135
3	1055.4	6.622
4	998.4	7.090
5	917.7	7.526
6	819.5	7.918
7	715	8.260
8	624.7	8.549
9	592.3	8.781
10	657.1	8.956
11	783.7	9.072
12	933.4	9.130
13	1086.6	9.128
14	1230.3	9.066
15	1355.5	8.944
16	1455.5	8.764
17	1526.4	8.530
18	1566.9	8.249
19	1577.8	7.928
20	1562.1	7.577
21	1523.8	7.207
22	1467.7	6.827
23	1398.8	6.446
24	1321.5	6.070
25	1239.8	5.707
26	1156.8	5.359
27	1075	5.029
28	996	4.719
29	921	4.428
30	850.7	4.158
31	785.4	3.906
32	725.1	3.674
33	669.8	3.458

距线路中心距离 (m)	离地面 1.5m 处工频电场强度(V/m)	离地面 1.5m 处工频磁感应强度(μT)
34	619.2	3.259
35	573.1	3.075
36	531.1	2.904
37	492.9	2.747
38	458.2	2.601
39	426.5	2.466
40	397.8	2.340
41	371.6	2.224
42	347.7	2.116
43	325.8	2.015
44	305.9	1.921
45	287.6	1.834
46	270.9	1.752
47	255.5	1.675
48	241.3	1.604
49	228.2	1.536
50	216.2	1.473
51	205.1	1.414
52	194.7	1.358
53	185.2	1.306
54	176.3	1.256
55	168	1.209
56	160.3	1.165
57	153.1	1.123
58	146.4	1.084
59	140.1	1.046
60	134.2	1.011
最大值	1577.8	9.130
标准限值(公众曝露控制限 值)	4000	100

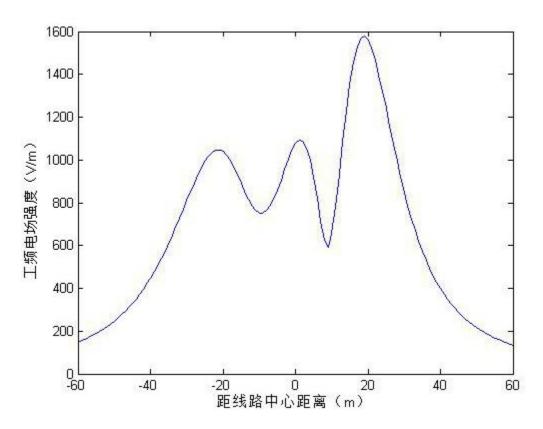


图 3-8 新建 220kV 单回架空线路 (三角排列) 并行段 1.5m 处工频电场强度分布曲线

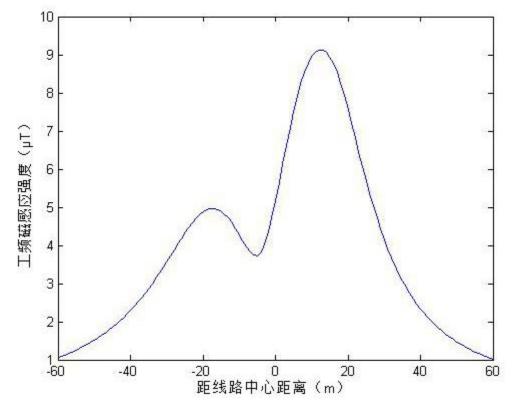


图 3-9 新建 220kV 单回架空线路 (三角排列) 并行段 1.5m 处工频磁感应强度分布曲线

经预测,新建 220kV 单回架空线路(三角排列)并行段在采用最不利塔型及最低导线对地高度情况下,线下地面 1.5m 高处工频电场强度最大值为 1577.8V/m,最大值出现在距线路中心19m 处,工频磁感应强度最大值为 9.130 μT,最大值出现在距线路中心 12m 处,满足《电磁环境控制限值》(GB 8702-2014)规定的 4000V/m 和 100μT 标准要求。

因线路沿线存在多条线路并行,线路沿线工频电场强度现状监测值最大为 1855V/m,从最不利角度分析,新建 220kV 单回架空线路(三角排列)并行段地面 1.5m 高处工频电场强度最大预测值(1577.8V/m)叠加最大现状监测值后仍远小于 10kV/m,因此新建 220kV 单回架空线路(三角排列)并行段经过耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所时能够满足电磁环境限值 10kV/m 标准要求。

(3) 工频电场强度及工频磁感应强度空间分布

本评价对新建 220kV 单回架空线路(三角排列)并行段在采用最不利塔型及最低导线对地 高度时进行了空间分布预测,工频电磁场空间分布详见下表及图。

表 3-11 新建 220kV 单回架空线路(三角排列)并行段工频电场强度空间分布(kV/m)

XX	1.5	4.5	7.5	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
-60	0.148	0.147	0.146	0.144	0.144	0.142	0.142	0.140	0.139	0.138	0.136	0.135	0.133	0.132	0.130	0.128	0.126	0.124	0.123	0.121	0.119	0.117	0.114	0.112	0.110
-50	0.247	0.246	0.243	0.241	0.239	0.237	0.235	0.233	0.231	0.228	0.225	0.222	0.219	0.216	0.212	0.208	0.205	0.201	0.196	0.192	0.188	0.183	0.179	0.174	0.170
-45	0.330	0.329	0.326	0.324	0.322	0.319	0.317	0.314	0.311	0.308	0.304	0.300	0.295	0.290	0.285	0.279	0.273	0.267	0.261	0.254	0.247	0.240	0.233	0.226	0.219
-40	0.449	0.449	0.448	0.447	0.446	0.445	0.443	0.440	0.437	0.433	0.428	0.422	0.416	0.409	0.401	0.392	0.382	0.372	0.362	0.351	0.339	0.328	0.316	0.304	0.293
-35	0.612	0.618	0.629	0.635	0.639	0.642	0.644	0.645	0.645	0.644	0.640	0.634	0.626	0.616	0.604	0.589	0.573	0.555	0.535	0.515	0.494	0.472	0.450	0.429	0.408
-30	0.812	0.837	0.886	0.915	0.938	0.963	0.984	1.008	1.025	1.041	1.052	1.056	1.053	1.041	1.022	0.994	0.959	0.919	0.875	0.828	0.781	0.733	0.686	0.640	0.597
-25	0.994	1.055	1.192	1.285	1.366	1.468	1.564	1.693	1.806	1.935	2.057	2.159	2.225	2.240	2.200	2.109	1.981	1.833	1.677	1.523	1.378	1.243	1.120	1.010	0.911
-24	1.019	1.087	1.247	1.359	1.458	1.588	1.712	1.887	2.047	2.239	2.433	2.606	2.729	2.769	2.716	2.579	2.388	2.173	1.957	1.751	1.563	1.394	1.243	1.110	0.993
-23	1.036	1.112	1.295	1.427	1.547	1.707	1.866	2.098	2.323	2.608	2.919	3.222	3.457	3.551	3.468	3.239	2.932	2.607	2.299	2.021	1.777	1.564	1.380	1.220	1.082
-22	1.046	1.128	1.333	1.485	1.625	1.819	2.017	2.319	2.627	3.047	3.550	4.101	4.584	4.805	4.645	4.202	3.666	3.156	2.712	2.336	2.021	1.755	1.530	1.339	1.176
-21	1.048	1.135	1.357	1.527	1.688	1.916	2.154	2.533	2.941	3.540	4.346	5.388	6.506	7.105	6.672	5.653	4.645	3.830	3.195	2.695	2.293	1.965	1.694	1.467	1.276
-20	1.040	1.130	1.365	1.551	1.729	1.986	2.262	2.715	3.226	4.031	5.253	7.213	10.231	12.560	10.647	7.789	5.854	4.598	3.730	3.088	2.591	2.193	1.869	1.602	1.380
-19	1.025	1.113	1.355	1.551	1.742	2.022	2.327	2.838	3.430	4.404	6.019	9.161	17.423	40.152	18.465	10.253	7.065	5.366	4.280	3.504	2.910	2.438	2.056	1.743	1.487
-18	1.000	1.084	1.324	1.525	1.724	2.018	2.340	2.879	3.507	4.542	6.261	9.613	18.460	42.997	20.007	11.246	7.838	6.004	4.810	3.936	3.253	2.702	2.255	1.891	1.596
-17	0.969	1.044	1.273	1.474	1.675	1.973	2.298	2.838		4.423	5.913	8.335	12.166	15.424	13.555	10.302	8.025	6.478	5.328	4.403	3.633	2.993	2.468	2.044	1.704
-16	0.933	0.993	1.202	1.397	1.596	1.892	2.211	2.730	3.298	4.143	5.303	6.860	8.679	10.001	9.998	9.073	7.964	6.914	5.917	4.964	4.086	3.326	2.700	2.201	1.809
-15	0.893	0.934	1.113	1.298	1.493	1.784	2.094	2.586	3.100	3.819	4.711	5.762	6.852	7.738	8.205	8.267	8.040	7.550	6.766	5.747	4.678	3.723	2.952	2.357	1.906
-14	0.854	0.870	1.006	1.181	1.373	1.660		2.434	2.907	3.531	4.247	5.018	5.784	6.508	7.211	7.905	8.504	8.754	8.272	7.018	5.510	4.205	3.219	2.503	1.986
-13	0.817	0.804	0.885	1.050	1.243	1.534	1.839	2.300	2.751	3.322	3.938	4.551	5.120	5.713	6.585	7.884	9.559	11.267	11.551	9.382	6.705	4.752	3.469	2.619	2.037
-12	0.786	0.744	0.750	0.913	1.116	1.418	1.732	2.201	2.654	3.215	3.799	4.343	4.771	5.123	6.144	8.104	11.220	16.823	22.055	14.255	8.180	5.235	3.637	2.673	2.046
-11	0.764	0.695	0.605	0.788	1.007	1.325	1.655	2.148		3.223	3.849	4.431	4.875	5.150	6.273		12.478			19.775		5.372	3.637	2.637	2.002
-10	0.752	0.668	0.505	0.710	0.936	1.267	1.615	2.146			4.098		5.540	6.208	-		11.949					5.000	3.438	2.505	1.905
-9	0.753	0.665	0.556		0.911	1.246	1.613	2.192		3.592	4.552	5.637	6.741	7.733			10.713			9.017	6.255	4.328	3.096	2.299	1.765
-8	0.765	0.683	0.605	0.721	0.915	1.255	1.644	2.277		3.924	5.200	6.859					9.861	-	8.131	6.546	4.932	3.639	2.707	2.055	1.598
-7	0.788	0.719	0.654	0.746	0.930	1.282	1.699	2.391	3.150	4.296	5.969					11.542		7.793	6.433	5.145	3.991	3.049	2.333	1.806	1.423
-6	0.820	0.769	0.709	0.765	0.944	1.331	1.784	2.529		4.625		10.340						6.742	5.333	4.215	3.299	2.566	1.998	1.570	1.251
-5	0.861	0.832	0.791	0.792	0.978	1.432	1.922	2.703		4.832		10.445						5.756	4.472	3.513		2.167	1.705	1.353	1.088
-4	0.907	0.908	0.927	0.985	1.188	1.642	2.147	2.937	3.757	4.925	6.529			14.690			6.285	4.791	3.739	2.944	2.321	1.831	1.449	1.157	0.936
-3	0.956	0.994	1.113	1.272	1.517	1.971	2.483	3.266		5.010	6.136	7.382	8.500			6.315		3.924	3.113	2.470	1.955	1.545	1.225	0.980	0.797
-2	1.004	1.084	1.328	1.585	1.895	2.401	2.947	3.744		5.226	5.917	6.434	6.636	6.374		4.794	3.949	3.217	2.599	2.080	1.651	1.302	1.029	0.821	0.669
-1	1.047	1.173	1.554	-		2.941	3.582	4.461		5.720	6.014	6.000	5.692	5.139			3.208	2.679	2.198	1.770		1.098	0.858	0.678	0.551
0	1.078	1.252	1.776	2.270	2.803	3.620	4.475	5.609	6.356		6.534	5.999	5.271	4.467	3.702	3.117	2.694	2.296	1.904	1.535	1.208	0.932	0.712	0.550	0.442
	1.093	1.312	1.981	2.618	3.322	4.466	5.768	7.633		8.653	7.633	6.390	5.220	4.176	3.265		2.387	2.059	1.710	1.372	1.067	0.806	0.594		0.341
2	1.087	1.346	2.149	2.928	3.827	5.428	7.584			12.695			5.449	4.218	3.280		2.305	1.957	1.609	1.278	0.980	0.724	0.512	0.347	0.247
3	1.055	1.350	2.262	3.154	4.212	6.238	-				11.529		5.825	4.478	3.528	2.863	2.377	1.965	1.588	1.247	0.947	0.692	0.480	0.308	0.173
4	0.998	1.321	2.312		4.366	6.472					11.998		6.187	4.828		3.114		2.051	1.632	1.270	0.963	0.708	0.504	0.349	0.256
5	0.918	1.263	2.300	3.236	4.274	6.071	8.449	12.986	16.000	14.066	10.617	8.165	6.482	5.232	4.242	3.433	2.762	2.200	1.728	1.337	1.017	0.762	0.565	0.423	0.337

6	0.820	1.182	2.246	3.129	4.032	5.413	6.916	9.007	10.196	10.158	9.147	7.945	6.815	5.758	4.762	3.854	3.064	2.404	1.866	1.437	1.099	0.838	0.642	0.503	0.413
7	0.715	1.093	2.177	2.991	3.755	4.801	5.794	7.017	7.794	8.221	8.225	7.940	7.402	6.579	5.533	4.439	3.459	2.660	2.035	1.557	1.195	0.922	0.722	0.579	0.481
8	0.625	1.019	2.121	2.870	3.522	4.338	5.044	5.875	6.496	7.154	7.804	8.368	8.590	8.086	6.815	5.290	3.966	2.957	2.220	1.684	1.292	1.005	0.797	0.647	0.541
9	0.592	0.999	2.101	2.800	3.376	4.046	4.579	5.165	5.657	6.479	7.749	9.411	11.109	11.386	9.216	6.534	4.567	3.265	2.396	1.800	1.380	1.079	0.862	0.705	0.592
10	0.657	1.061	2.130	2.800	3.337	3.937	4.379	4.778	5.032	5.988	7.952	11.085	16.702	21.953	14.181	8.101	5.136	3.515	2.529	1.886	1.446	1.136	0.913	0.751	0.633
11	0.784	1.181	2.209	2.876	3.417	4.028	4.481	4.875	5.047	6.104	8.386	12.395	23.558	NaN	19.918	8.993	5.382	3.612	2.583	1.927	1.483	1.171	0.947	0.784	0.663
12	0.933	1.325	2.330	3.023	3.615	4.332	4.922	5.577	6.123	7.145	8.944	11.935	17.422	22.396	14.263	8.085	5.114	3.508	2.541	1.913	1.485	1.183	0.964	0.802	0.682
13	1.087	1.473	2.474	3.222	3.913	4.841	5.714	6.818	7.654	8.532	9.515	10.738	11.953	11.756	9.271	6.483	4.516	3.245	2.413	1.849	1.455	1.171	0.963	0.807	0.690
14	1.230	1.609	2.619	3.437	4.263	5.521	6.899	8.884	10.175	10.587	10.293	9.879	9.337	8.320	6.783	5.179	3.871	2.914	2.234	1.748	1.397	1.139	0.946	0.800	0.688
15	1.356	1.724	2.734	3.613	4.577	6.245	8.476	12.826	15.878	14.349	11.385	9.330	7.869	6.594	5.366	4.243	3.308	2.581	2.034	1.626	1.321	1.091	0.916	0.781	0.677
16	1.456	1.808	2.793	3.689	4.724	6.686	9.841	20.604	44.333	20.980	12.086	8.656	6.774	5.466	4.420	3.551	2.840	2.274	1.834	1.495	1.234	1.033	0.877	0.755	0.659
17	1.526	1.856	2.779	3.622	4.597	6.445	9.406	19.437	41.230	19.113	10.740	7.494	5.738	4.575	3.704	3.010	2.451	2.002	1.645	1.363	1.142	0.968	0.830	0.722	0.635
18	1.567	1.867	2.690	3.417	4.216	5.594	7.406	10.792	12.809	10.873	7.980	6.016	4.725	3.812	3.118	2.568	2.124	1.763	1.472	1.238	1.050	0.900	0.780	0.684	0.607
19	1.578	1.842	2.541	3.119	3.705	4.589	5.522	6.713	7.189	6.726	5.684	4.655	3.818	3.157	2.628	2.198	1.845	1.555	1.316			0.833	0.729	0.645	0.576
20	1.562	1.788	2.355	2.786	3.186	3.718	4.190	4.673	4.823	4.630	4.160	3.603	3.074	2.612	2.219	1.887	1.608	1.374	1.177	1.014	0.879	0.768	0.677	0.604	0.545
21	1.524										3.167					1.627		1.217	1.056	0.918	0.803	0.706	0.627	0.563	0.512
22	1.468	1.617									2.497					1.412			0.950					0.523	0.481
23	1.399	1.515	1.759		2.008						2.026					1.233		0.969	0.859	0.761	0.676	0.602	0.538	0.485	0.453
24	1.322	1.410	1.584	1.678	1.742			1.844		1.768	_								0.781						-
25	1.240	1.305			1.523			1.562		1.492									0.714						
30											0.753													0.356	
35			0.559								0.479														
40											0.335													0.224	
45			0.279								0.248													-	
50	0.00	0.00	*								0.191														
60											0.123														
	0.134									0.124	0.123	0.122	0.120	0.119	0.110	0.110	0.113	0.113	0.111	0.110	0.108	0.100	0.103	0.103	0.101

备注: X 为距线路中心的距离, Y 为距离地面的高度。

表 3-12 新建 220kV 单回架空线路(三角排列)并行段工频磁感应强度空间分布(µT)

XY	1.5	4.5	7.5	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
-60	1.053	1.089	1.122	1.151	1.157	1.164	1.168	1.173	1.176	1.178	1.180	1.180	1.179	1.178	1.176	1.172	1.168	1.163	1.157	1.150	1.142
-50	1.511	1.592	1.669	1.742	1.758	1.774	1.786	1.798	1.807	1.813	1.818	1.819	1.819	1.816	1.810	1.802	1.792	1.779	1.764	1.747	1.729
-45	1.848	1.977	2.104	2.229	2.257	2.287	2.308	2.329	2.345	2.358	2.366	2.370	2.369	2.364	2.355	2.341	2.323	2.301	2.276	2.247	2.215
-40	2.292	2.505	2.726	2.958	3.011	3.069	3.112	3.154	3.188	3.214	3.232	3.240	3.240	3.231	3.213	3.186	3.151	3.109	3.060	3.005	2.945
-35	2.866	3.229	3.640	4.112	4.226	4.358	4.456	4.553	4.634	4.698	4.742	4.765	4.766	4.746	4.704	4.642	4.563	4.467	4.359	4.240	4.112
-30	3.573	4.197	4.992	6.058	6.346	6.695	6.969	7.252	7.499	7.699	7.841	7.916	7.921	7.855	7.724	7.535	7.300	7.029	6.734	6.425	6.109
-25	4.327	5.334	6.834	9.394	10.243	11.390	12.404	13.574	14.724	15.748	16.519	16.919	16.888	16.448	15.689	14.728	13.672	12.597	11.555	10.574	9.667
-24	4.464	5.554	7.230	10.257	11.314	12.793	14.153	15.793	17.485	19.065	20.292	20.924	20.831	20.073	18.850	17.390	15.869	14.394	13.020	11.767	10.639
-23	4.591	5.760	7.616	11.160	12.466	14.364	16.193	18.524	21.091	23.660	25.769	26.852	26.589	25.160	23.066	20.767	18.540	16.504	14.692	13.097	11.702
-22	4.704	5.947	7.978	12.070	13.660	16.064	18.504	21.824	25.822	30.260	34.282	36.387	35.599	32.582	28.747	25.021	21.738	18.939	16.570	14.559	12.847
-21	4.800	6.108	8.302	12.940	14.829	17.797	20.974	25.623	31.879	40.004	48.855	53.920	51.141	43.752	36.294	30.208	25.440	21.671	18.631	16.136	14.062
-20	4.878	6.236	8.571	13.709	15.882	19.405	23.350	29.533	38.911	53.951	77.213	95.574	81.652	60.187	45.575	36.070	29.484	24.616	20.836	17.806	15.329
-19	4.933	6.326	8.772	14.318	16.720	20.689	25.255	32.736	45.100		132.273					41.829	33.564	27.661	23.143	19.550	16.636
-18	4.963	6.373	8.893	14.719	17.264	21.479	26.340	34.317	47.527	73.252	141.107				60.499	46.490	37.393	30.746	25.554		17.980
-17	4.967	6.371	8.925	14.894	17.486	21.723	26.499	34.033	45.547	64.228		118.735				49.790		33.998	28.172	23.334	
-16	4.944	6.319	8.865	14.855	17.414	21.500	25.933	32.500	41.487	53.502	67.434	77.374	76.979	69.536	60.829	52.700	45.086	37.868	31.259	25.546	20.852
-15	4.893	6.214	8.712	14.636	17.120	20.979	24.987	30.552	37.441	45.495	53.735	60.189	63.244	63.166	61.008	57.037	51.002	43.318	35.304	28.181	22.439
-14	4.815	6.055	8.469	14.286	16.689	20.334	23.977	28.762	34.234	40.085	45.784	50.920	55.607	60.122	64.031	65.505	61.703	52.295	41.077	31.401	24.107
-13	4.711	5.843	8.138	13.847	16.197	19.706	23.120	27.427	32.070	36.674	40.877	44.995	50.711	59.510	71.297	83.499	85.342	69.240	49.494	35.117	25.681
-12	4.583	5.579	7.721	13.350	15.695	19.182	22.539	26.695	31.025	35.053	38.233	40.712	46.841	60.372	82.809	123.623	161.776		60.007	38.439	26.741
-11	4.436	5.266	7.222	12.811	15.207	18.802	22.289	26.635	31.192	35.416	38.563	40.060	46.300	62.536		172.109		144.648		39.415	26.737
-10	4.276	4.907	6.641	12.231	14.733	18.560	22.363	27.257	32.643	38.028	42.724	46.826	53.423	65.856		126.215	161.519		58.142	36.867	25.440
-9	4.111	4.509	5.984	11.604	14.256	18.421	22.700	28.487	35.380	43.093	50.765	57.340	63.072		77.903	86.249		66.356	46.287	-	23.210
-8	3.955	4.083	5.264	10.923	13.761	18.327	23.185	30.139	39.275	51.097	64.711	75.256	77.642	74.906		67.275	59.678	48.424	36.807	27.426	20.635
-7	3.823	3.645	4.514	10.207	13.255	18.237	23.669	31.838	43.722	62.345		116.850				56.654	47.244	38.212	30.013	23.268	18.105
-6	3.741	3.220	3.812	9.521	12.817	18.177	24.033	33.027	46.998		140.488				62.538	48.698	39.046	31.325	24.936	19.778	15.765
-5	3.736	2.873	3.327	9.053	12.643	18.297	24.308	33.309	46.953		135.659				54.117	41.132	32.505	26.014	20.876	16.800	13.628
-4	3.833	2.983	3.336	9.230	13.072	18.888	24.768	32.947			82.753	98.449	81.244	58.405	43.424	33.724	26.848	21.602	17.465	14.202	11.674
-3	4.039	3.541	4.033	10.508	14.456		25.882	32.807	40.494	48.706	55.804	57.415			33.612	27.128	22.003	17.873	14.544	11.909	9.886
-2	4.344	4.264	5.306	12.895	17.023	23.008	28.253	33.871	38.665	41.952	42.841	40.636		30.893	26.125	21.847	18.059	14.786	12.058	9.887	8.252
-1	4.728	5.109	6.961	16.355	21.048		32.747	37.137	39.343		36.529	32.149	27.357	23.828	20.957	18.003	15.061	12.342	9.998	8.125	6.764
0	5.169	6.039	8.870	21.074	27.112		41.056	44.108	43.284	39.637	34.325	28.191	22.046	19.669	17.884	15.534	12.993	10.543	8.378	6.631	5.418
1	5.644	7.019	10.925	27.303	36.271		57.546	58.036	51.661	43.355	35.291	28.043	22.200	18.980	16.715	14.291	11.789	9.394	7.248	5.462	4.211
2	6.135	8.005	12.996	34.859	49.625	78.405	98.313	87.280	65.683	49.718	38.466	30.199	24.198	20.043	16.870	14.021	11.344	8.884	6.703	4.833	3.287
3	6.622	8.958	14.929	42.048	64.600	140.851		145.900		56.673	42.501	33.195	26.591	21.686	17.788	14.459	11.526	8.959	6.772	4.989	3.729
4	7.090	9.840	16.574	45.702	69.647		328.204			60.849	46.134	36.419	29.304	23.753	19.223	15.413	12.187	9.490	7.302	5.631	4.526
5	7.526	10.625	17.841	44.798	62.160	95.538	117.969	104.136	79.046	61.214	48.972	39.818	32.449	26.293	21.106	16.766	13.192	10.314	8.070	6.410	5.291

6	7.918	11.297	18.724	41.596	52.704	68.242	77.079	76.746	69.166	60.223	51.828	43.936	36.431	29.514	23.472	18.449	14.424	11.290	8.918	7.188	5.990
7	8.260	11.855	19.298	38.235	45.576	54.623	60.271	63.169	62.876	60.508	56.336	50.080	42.140	33.840	26.423	20.410	15.778	12.304	9.746	7.901	6.604
8	8.549	12.306	19.670	35.570	40.760	46.858	51.266	55.685	59.957	63.700	65.049	61.085	51.454	39.981	30.059	22.557	17.131	13.249	10.478	8.506	7.112
9	8.781	12.659	19.945	33.834	37.747	42.049	45.470	50.792	59.319	71.028	83.234	85.023	68.758	48.806	34.236	24.649	18.308	14.014	11.045	8.965	7.497
10	8.956	12.927	20.205	33.152	36.390	39.377	41.206	46.581	59.843	82.357	123.350	161.691	104.397	59.723	38.006	26.195	19.074	14.480	11.387	9.248	7.743
11	9.072	13.114	20.490	33.686	36.958	39.685	40.356	45.141	61.593	90.551	171.562	NaN	144.847	65.502	39.340	26.575	19.209	14.559	11.465	9.339	7.844
12	9.130	13.220	20.796	35.570	39.805	44.126	47.062	52.869	65.104	86.383	125.763	161.495	102.853	58.374	37.024	25.528	18.649	14.236	11.278	9.239	7.804
13	9.128	13.237	21.070	38.807	45.158	52.777	58.002	63.154	69.346	77.661	86.141	84.589	66.676	46.650	32.542	23.463	17.549	13.584	10.863	8.970	7.639
14	9.066	13.153	21.214	43.157	53.366	67.689	76.449	78.360	75.317	71.791	67.595	60.115	48.968	37.382	27.952	21.064	16.188	12.739	10.293	8.571	7.374
15	8.944	12.956	21.100	47.683	64.347	96.552	118.599	106.279	83.758	68.336	57.487	48.113	39.129	30.927	24.105	18.802	14.815	11.851	9.660	8.086	7.043
16	8.764	12.638	20.616	49.986	73.536	153.653	329.833	155.662	89.487	64.015	50.089	40.430	32.722	26.306	21.044	16.850	13.576	11.045	9.092	7.588	6.724
17	8.530	12.202	19.716	47.319	69.359	143.905	306.011	142.194	80.090	56.027	43.026	34.410	27.937	22.772	18.585	15.209	12.512	10.377	8.699	7.426	6.595
18	8.249	11.661	18.448	40.444	54.027	79.471	94.967	81.169	59.966	45.495	35.960	29.187	24.020	19.898	16.545	13.810	11.592	9.807	8.393	7.310	6.516
19	7.928	11.039	16.938	32.768	39.937	49.240	53.297	50.416	43.047	35.613	29.491	24.617	20.687	17.464	14.796	12.586	10.763	9.274	8.074	7.127	6.390
20	7.577	10.364	15.333	26.282	30.103	34.194	35.787	34.853	31.758	27.873	24.092	20.733	17.839	15.367	13.265	11.486	9.991	8.747	7.724	6.892	6.219
21	7.207	9.665	13.758	21.295	23.451	25.527	26.293	25.889	24.357	22.185	19.821	17.529	15.428	13.555	11.911	10.485	9.261	8.222	7.348	6.618	6.012
22	6.827	8.969	12.293	17.538	18.832	19.998	20.414	20.198	19.339	18.035	16.509	14.931	13.407	11.993	10.712	9.572	8.572	7.704	6.958	6.321	5.779
23	6.446	8.296	10.974	14.689	15.508	16.214	16.457	16.324	15.796	14.963	13.942	12.835	11.721	10.651	9.653	8.742	7.925	7.201	6.565	6.011	5.530
24	6.070	7.657	9.810	12.493	13.035	13.488	13.638	13.548	13.200	12.641	11.933	11.140	10.316	9.500	8.719	7.991	7.322	6.718	6.178	5.698	5.273
25	5.707	7.062	8.795	10.770	11.143	11.447	11.544	11.478	11.237	10.845	10.340	9.759	9.141	8.513	7.899	7.313	6.766	6.262	5.802	5.387	5.014
30	4.158	4.771	5.401	5.951	6.037	6.102	6.119	6.099	6.039	5.941	5.809	5.649	5.467	5.269	5.060	4.846	4.631	4.419	4.212	4.013	3.822
35	3.075	3.370	3.641	3.850	3.881	3.903	3.908	3.900	3.878	3.842	3.794	3.733	3.663	3.584	3.497	3.405	3.309	3.211	3.111	3.011	2.911
40	2.340	2.496	2.630	2.728	2.742	2.752	2.754	2.751	2.741	2.725	2.703	2.676	2.643	2.606	2.564	2.519	2.471	2.420	2.367	2.313	2.258
45	1.834	1.923	1.997	2.050	2.057	2.062	2.064	2.062	2.058	2.049	2.038	2.024	2.007	1.987	1.964	1.940	1.913	1.884	1.854	1.823	1.791
50	1.473	1.528	1.573	1.604	1.608	1.612	1.613	1.612	1.609	1.605	1.598	1.590	1.580	1.569	1.556	1.541	1.525	1.508	1.490	1.471	1.451
60	1.011	1.035	1.054	1.067	1.069	1.071	1.071	1.071	1.070	1.069	1.066	1.063	1.059	1.054	1.049	1.043	1.036	1.029	1.021	1.013	1.004
	-			•	•	•	-	•			•	-		•							

备注: X 为距线路中心的距离, Y 为距离地面的高度。

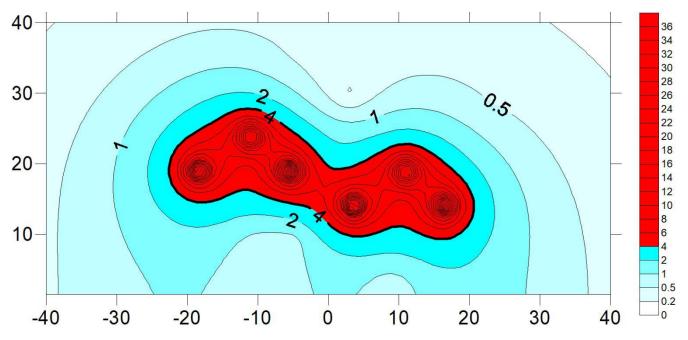


图 3-10 220kV 单回架空线路(三角排列)并行段工频电场强度空间分布等值线图(kV/m)

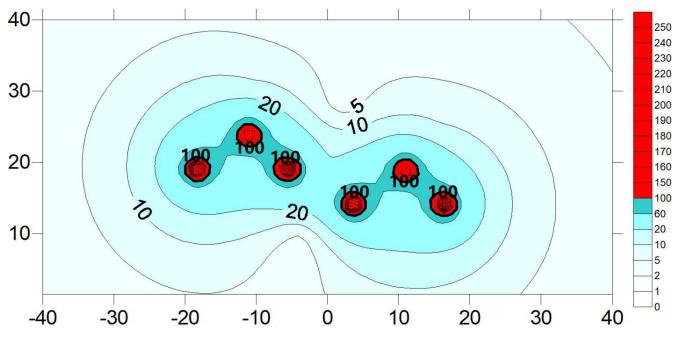


图 3-11 220kV 单回架空线路(三角排列)并行段工频磁感应强度空间分布等值线图(μT) ①工频电场空间分布分析

经预测,新建 220kV 单回架空线路(三角排列)并行段在采用最不利塔型及最低导线对地高度时,在距离地面(9~28)m 高度范围内,距离导线地面投影中心(-23~21)m 以内的部分区域超过 4000V/m 标准限值,其他区域均满足标准要求。因此,在采用最不利塔型及最低导线对地高度时,在不考虑风偏的情况下,新建 220kV 单回架空线路(三角排列)并行段需与沿线环境保护目标建筑的水平距离至少为 5m(23m-18.5m=4.5m,21-16.5m=4.5m,取 5m)或

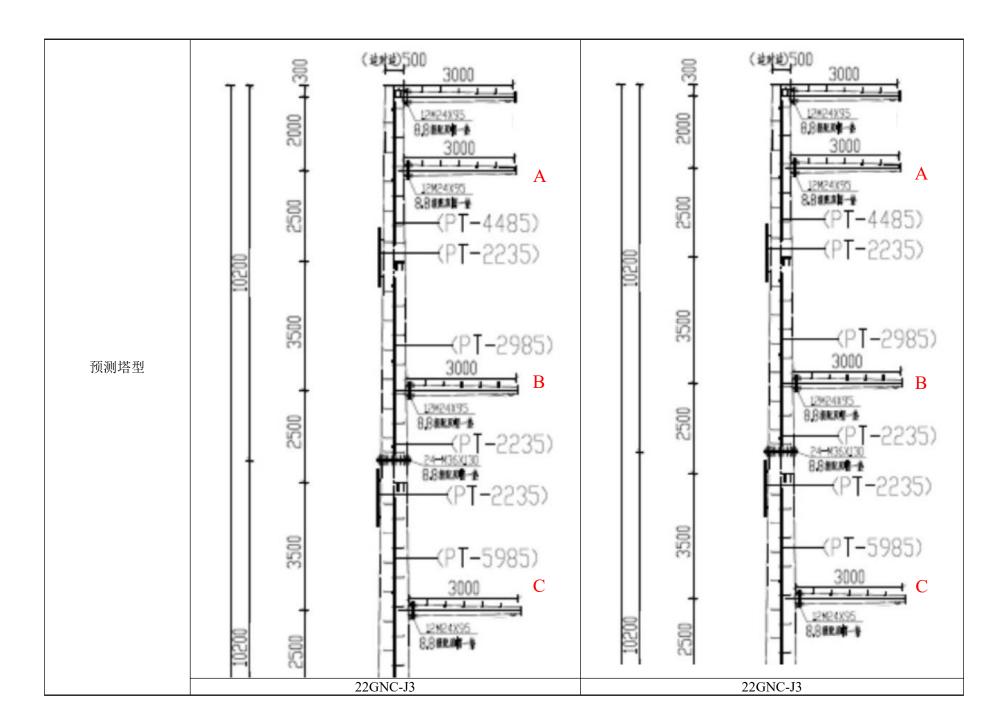
本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 5m(14m-9m=5m)(满足二者条件之一即可)。

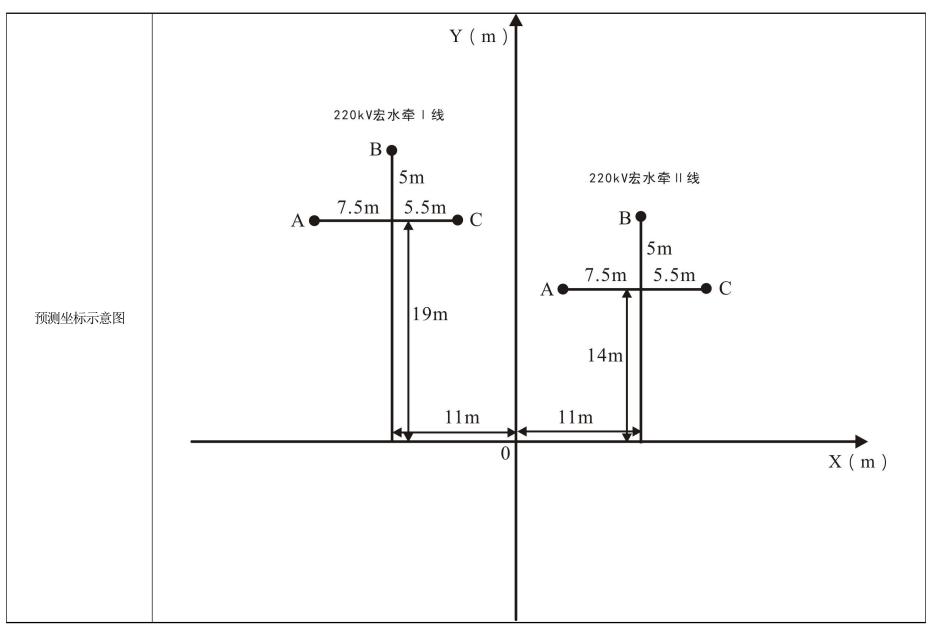
②工频磁场空间分布分析

经预测,新建 220kV 单回架空线路(三角排列)并行段在采用最不利塔型及最低导线对地高度时,在距离地面(12~26)m 高度范围内,距离导线地面投影中心(-20~18)m 范围内的部分区域超过 100μT 标准限值,其他区域均满足标准要求。因此,在采用最不利塔型及最低导线对地高度时,在不考虑风偏的情况下,新建 220kV 单回架空线路(三角排列)并行段需与沿线环境保护目标建筑的水平距离至少为 2m(20m-18.5m=1.5m,18-16.5m=1.5m,取 2m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 2m(14m-12m=2m)(满足二者条件之一即可)。

③结论

综合上述分析,新建 220kV 单回架空线路(三角排列)并行段在采用最不利塔型及最低导线对地高度前提下,在不考虑风偏的情况下,新建 220kV 单回架空线路(三角排列)并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 5m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可)。


3.2.8 新建 220kV 单回架空线路(导线垂直)并行段电磁环境影响评价


本次评价对新建两条 220kV 单回架空线路(导线垂直)并行段电磁环境影响预测从最不利角度选取并行间距最小,两条线路中导线对地高度最低以及最不利塔型进行预测。

(1) 预测参数

表 3-13 新建 220kV 单回架空线路(导线垂直)并行段电磁环境预测参数一览表

名称	220kV 宏水牵 I 线	220kV 宏水牵 II 线
最小并行间距	14m(线路·	中心间距)
导线型号	JL3/G1A-400/35 型导线	JL3/G1A-400/35 型导线
电压 ^①	220kV (环保计算电压 231kV)	220kV (环保计算电压 231kV)
导线排列方式	垂直排列	垂直排列
分裂数	单导线	单导线
线路计算电流	794A(裸导线的安全载流量)	794A(裸导线的安全载流量)
导线半径	1.341cm	1.341cm
导线对地最小距离 [®]	19m	14m
预测坐标 [®]	A (-4, 31); B (-4, 25); C (-4, 19)	A (10, 26); B (10, 20); C (10, 14)

备注:①环保计算电压为额定电压的 1.05 倍;②根据现场调查及设计单位提供的断面图确定。③以并行间距中心为原点,预测塔型垂直间距为最小导线对地高度,水平间距增加并行间距。

(2) 预测结果

新建 220kV 单回架空线路(导线垂直)并行段以 22GNC-J3 为最不利塔型进行预测,以并行线路并行间距中心为预测原点,沿垂直于线路方向进行,预测点间距为 1m,至少预测至新建 220kV 单回架空线路边导线外 40m 为止,预测离地面 1.5m 处的工频电场强度、工频磁感应强度。计算结果见下表及图。

表 3-14 新建 220kV 单回架空线路(导线垂直)并行段电磁环境预测结果

距线路中心距离 (m)	离地面 1.5m 高处工频电场强度(V/m)	离地面 1.5m 高处工频磁感应强度(μT)
-60	100.7	0.751
-59	102.1	0.772
-58	103.5	0.795
-57	104.8	0.819
-56	106.1	0.843
-55	107.3	0.869
-54	108.5	0.896
-53	109.5	0.924
-52	110.5	0.953
-51	111.4	0.983
-50	112.1	1.015
-49	112.6	1.048
-48	113	1.083
-47	113.2	1.120
-46	113.1	1.158
-45	112.8	1.198
-44	112.2	1.240
-43	111.2	1.284
-42	109.9	1.330
-41	108.1	1.378
-40	105.9	1.429
-39	103	1.482
-38	99.6	1.537
-37	95.6	1.596
-36	90.8	1.657
-35	85.3	1.721
-34	78.9	1.789
-33	71.8	1.860
-32	64	1.934
-31	55.7	2.012
-30	47.4	2.093
-29	40.3	2.179
-28	39.6	2.268
-27	50.8	2.361
-26	68	2.459
-25	89.4	2.560
-24	114.7	2.666
-23	143.8	2.775
-22	176.6	2.889
-21	213.3	3.006
-20	253.9	3.126
-19	298.5	3.250

距线路中心距离(m)	离地面 1.5m 高处工频电场强度 (V/m)	离地面 1.5m 高处工频磁感应强度(μT)
-18	347.1	3.375
-17	399.7	3.502
-16	456.1	3.631
-15	516	3.759
-14	579.3	3.886
-13	645.3	4.011
-12	713.4	4.132
-11	783.1	4.250
-10	853.5	4.362
<u>-10</u>	923.7	4.468
-8	993.1	4.569
-8 -7	1060.9	4.664
<u>-6</u>	1126.6	4.754
-5	1190	4.842
-4	1251	4.930
-3	1310	5.021
-2	1367.4	5.118
-1	1423.9	5.225
0	1480	5.346
1	1536.1	5.481
2	1592	5.632
3	1646.8	5.796
4	1698.8	5.970
5	1745.6	6.148
6	1783.7	6.321
7	1809.2	6.479
8	1818.5	6.612
9	1808	6.711
10	1775.6	6.768
11	1720.7	6.779
12	1644.4	6.740
13	1549.3	6.655
14	1439.3	6.526
15	1318.9	6.361
16	1192.7	6.166
17	1065.1	5.949
18	939.6	5.717
19	819.1	5.477
20	705.7	5.233
21	600.7	4.990
22	504.8	4.751
23	418.3	4.519
24	341	4.295
25	272.6	4.080
26	212.8	3.875
27	161.1	3.681
28	117.2	3.497
	81.2	3.497
30 31	54 43.7	3.159
		3.004
32	55.3	2.859
33	70.1	2.722

距线路中心距离(m)	离地面 1.5m 高处工频电场强度(V/m)	离地面 1.5m 高处工频磁感应强度(μT)
34	84.6	2.594
35	97.8	2.473
36	109.3	2.359
37	119.1	2.252
38	127.3	2.152
39	134	2.057
40	139.5	1.968
41	143.8	1.884
42	147.1	1.805
43	149.5	1.731
44	151.2	1.661
45	152.2	1.594
46	152.7	1.531
47	152.6	1.472
48	152.2	1.416
49	151.4	1.363
50	150.3	1.312
51	149	1.265
52	147.4	1.219
53	145.7	1.176
54	143.8	1.135
55	141.9	1.097
56	139.8	1.060
57	137.7	1.024
58	135.5	0.991
59	133.2	0.959
60	131	0.928
最大值	1818.5	6.779
标准限值(公众曝露控制限值)	4000	100

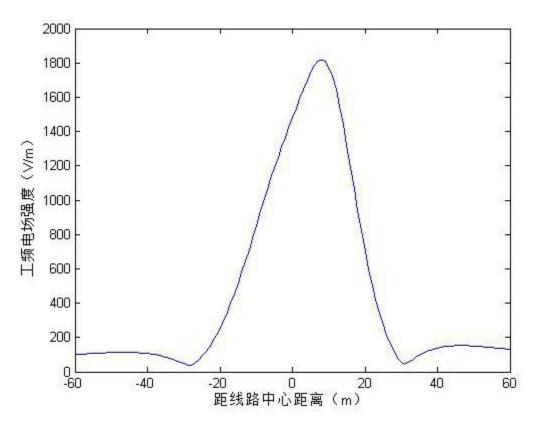


图 3-12 新建 220kV 单回架空线路(导线垂直)并行段 1.5m 处工频电场强度分布曲线

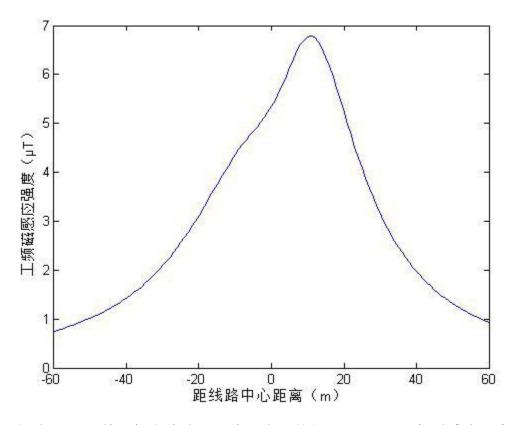


图 3-13 新建 220kV 单回架空线路(导线垂直)并行段 1.5m 处工频磁感应强度分布曲线

经预测,新建 220kV 单回架空线路(导线垂直)并行段在采用最不利塔型及最低导线对地高度时,线下地面 1.5m 高处工频电场强度最大值为 1818.5V/m,最大值出现在距线路中心 8m处,工频磁感应强度最大值为 6.779μT,最大值出现在距线路中心 11m处,满足《电磁环境控制限值》(GB 8702-2014)规定的 4000V/m 和 100μT 标准要求。

因线路沿线存在多条线路并行,线路沿线工频电场强度现状监测值最大为 1855V/m,从最不利角度分析,新建 220kV 单回架空线路(导线垂直)并行段地面 1.5m 高处工频电场强度最大预测值(1818.5V/m)叠加最大现状监测值后仍远小于 10kV/m,因此新建 220kV 单回架空线路(导线垂直)并行段经过耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所时能够满足电磁环境限值 10kV/m 标准要求。

(3) 工频电场强度及工频磁感应强度空间分布

本评价对新建 220kV 单回架空线路(导线垂直)并行段在最不利塔型及最低导线对地高度时进行了空间分布预测,工频电磁场空间分布详见下表及图。

表 3-15 新建 220kV 单回架空线路(导线垂直)并行段工频电场强度空间分布(kV/m)

11	1.5	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	27	28	29	30	31	32	33	34	35 3	36
-60	\	0.102					0.104		0.105	0.106	0.106	0.106	0.107	0.107	0.108		0.108	0.108	0.108	0.108	0.108				0.108 0.1	_
-50	_	0.118					0.125	0.126	0.128	0.129	0.131	0.132	0.133		0.138		0.140	0.141		0.142	0.142				0.142 0.1	
-45	_	0.124				0.134	0.137	0.139	0.142		0.147	0.150	0.152	0.156	0.160		0.164	0.165		0.167	0.167	-	-		0.167 0.1	_
-40	_	0.128					0.151	0.156	0.161		0.170	0.174	0.178	0.185	0.191	0.196		0.200	0.202	0.203	0.203				0.203 0.2	_
-35	+	0.130	-		-		0.173	0.181	0.189	0.197	0.204	0.212	0.218		0.240	0.248		0.253		0.256	0.257				0.255 0.2	
-30	_	0.144					0.216	0.229	0.242	0.255	0.267	0.278	0.289	0.307	0.322		0.337	0.340	0.342	0.343	0.342				0.334 0.3	_
-25	0.089	0.209	0.229	0.252	0.271	0.294	0.312	0.333	0.352	0.371	0.390	0.407	0.423	0.450	0.471	0.486	0.490	0.492	0.493	0.491	0.488	0.484	0.478	0.470	0.462 0.4	452
-20	0.254	0.376	0.403	0.434	0.460	0.493	0.521	0.552	0.583	0.614	0.643	0.670	0.696	0.739	0.769	0.786	0.788	0.787	0.781	0.772	0.760	0.744	0.726	0.705	0.682 0.6	658
-19	0.299	0.426	0.454	0.488	0.517	0.554	0.585	0.619	0.654	0.688	0.721	0.752	0.781	0.828	0.862	0.878	0.879	0.876	0.869	0.857	0.841	0.821	0.798	0.772	0.744 0.7	715
-18	0.347	0.482	0.512	0.549	0.581	0.623	0.658	0.697	0.737	0.776	0.813	0.848	0.881	0.934	0.970	0.986	0.987	0.982	0.972	0.956	0.935	0.910	0.881	0.849	0.815 0.7	779
-17	0.400	0.544	0.578	0.619	0.655	0.702	0.742	0.787	0.833	0.878	0.922	0.962	0.999	1.059	1.098	1.115	1.114	1.107	1.093	1.073	1.046	1.015	0.978	0.938	0.895 0.8	852
-16	0.456	0.612	0.650	0.697	0.738	0.792	0.839	0.892	0.946	1.000	1.051	1.098	1.141	1.209	1.252	1.268	1.266	1.256	1.238	1.212	1.178	1.138	1.092	1.041	0.988 0.9	934
-15	0.516	0.687	0.731	0.784	0.832	0.896	0.951	1.015	1.080	1.144	1.206	1.262	1.312	1.390	1.435	1.451	1.448	1.435	1.412	1.380	1.337	1.285	1.226	1.162	1.095 1.0	028
-14	0.579	0.769	0.818	0.880	0.937	1.013	1.080	1.158	1.238	1.318	1.393	1.462	1.522	1.609	1.657	1.673	1.668	1.653	1.626	1.584	1.530	1.463	1.387	1.304	1.219 1.1	134
-13	0.645	0.856	0.913	0.986	1.053	1.146	1.228	1.326	1.428	1.529	1.624	1.710	1.782	1.879	1.925	1.942	1.938	1.923	1.890	1.839	1.769	1.681	1.581	1.474	1.364 1.2	256
-12	0.713	0.948	1.014	1.100	1.181	1.295	1.398	1.524	1.656	1.788	1.914	2.024	2.113	2.217	2.252	2.270	2.273	2.261	2.226	2.163	2.071	1.954	1.820	1.677	1.534 1.3	396
-11	0.783	1.043	1.119	1.221	1.319	1.460	1.592	1.756	1.933	2.114	2.285	2.432	2.544	2.647	2.650	2.673	2.693	2.694	2.662	2.586	2.465	2.305	2.120	1.925	1.733 1.5	554
-10	0.854	1.138	1.226	1.345	1.464	1.640	1.811	2.030	2.274	2.531	2.776	2.983	3.128	3.213	3.136	3.171	3.234	3.269	3.249	3.159	2.995	2.769	2.504	2.230	1.968 1.7	732
-9	0.924	1.230	1.330	1.468	1.611	1.829	2.051	2.348	2.697	3.078	3.453	3.762	3.958	3.993	3.737	3.806	3.965	4.066	4.076	3.973	3.744	3.406	3.008	2.607	2.242 1.9	928
-8	0.993	1.316	1.425	1.583	1.750	2.017	2.303	2.708	3.218	3.817	4.434	4.936	5.209	5.130	4.578	4.734	5.047	5.229	5.293	5.194	4.869	4.328	3.687	3.074	2.553 2.1	135
-7	1.061	1.389	1.506	1.678	1.868	2.186	2.545	3.092	3.846	4.838	5.968	6.887	7.236	6.846	6.332	6.539	6.792	6.969	7.139	7.158	6.724	5.761	4.622	3.636	2.886 2.3	337
-6	1.127	1.446	1.564	1.744	1.949	2.308	2.738	3.445	4.538	6.240	8.639	10.731	10.850	9.287	9.942	10.177	9.560	9.422	9.885	10.620	10.346	8.234	5.896	4.254	3.197 2.5	503
-5	1.190	1.483	1.593	1.767	1.973	2.351	2.828	3.668	5.118	7.889	13.821	22.026	17.927	11.991	16.986	17.374	13.148	12.122	13.311	17.298	20.882	12.964	7.364	4.766	3.400 2.5	592
-4	1.251	1.497	1.591	1.742	1.929	2.288	2.764	3.642	5.251	8.694	19.514	NaN	25.881	13.332	24.597	25.368	15.258	13.452	15.181	24.466	NaN	17.911	7.996	4.867	3.396 2.5	566
-3	1.310	1.491	1.556	1.666	1.811	2.110	2.530	3.324	4.759		13.605				16.713				13.131			12.096	6.810	4.397	3.147 2.4	416
-2	1.367	1.470	1.497	1.548	1.628	1.829	2.152	2.796	3.909	5.741	8.419	10.908	11.298	9.558	9.558	10.637	9.975	9.548	9.610	9.874	9.234	7.124	5.011	3.602	2.728 2.1	170
-1	1.424	-		1.404	_	1.474	1.685	2.192	3.060	4.313	5.835	7.184	7.838	7.373	5.993	7.270	7.343	7.132	6.823	6.365	5.596	4.562		2.795		879
0	1.480		1.364	1.265		1.080	1.172	1.626	2.388	3.375	4.459	5.412	6.004	5.993	5.253		5.678		4.957	4.375	3.715	3.066		2.107	1.808 1.5	
1	1.536		1.339			0.745	0.673	1.228	1.971	2.839	3.723	4.484	5.000	5.210	4.902	4.845	4.659	4.273	3.738	3.136	2.555	2.079		1.554	1.424 1.3	321
2	1.592		1.378	1.176		0.683	0.692	1.147	1.851	2.640	3.403	4.040	4.485	4.799	4.688		4.046	3.547	2.944	2.323	1.771	1.369	1.168	1.119		102
3	1.647		1.504	1.311		0.783	0.843	1.357	2.029	2.747	3.406	3.933	4.299	4.647	4.648	4.196	3.728	3.122	2.449	1.795	1.238				0.888 0.9	
4	+	1.797			1.461	1.300	1.419	1.896	2.518		3.703	4.102	4.361	4.715	4.830	4.261	3.671	2.950	2.195	1.497	0.929				0.754 0.8	_
5	+	2.052			2.082	2.142	2.354	2.798		3.896	4.313	4.543	4.632	5.005	5.310		3.899	3.029	2.166	1.409	0.816	0.465			0.705 0.7	_
6		2.367		-		3.306	3.675	4.155				5.354	5.116	5.612	6.228		4.500	3.392	2.364	1.529	0.909				0.724 0.7	
7	-	2.716			4.180	5.058	5.750	6.282	6.587	6.819	7.004	6.945	6.335	6.897	7.825		5.688	4.108	2.792	1.838	1.206	0.860			0.788 0.8	-
8		3.054			5.864	8.073	9.683	9.969	9.464	9.272	9.639	10.323			10.380	10.595		5.274	3.412	2.257	1.562	1.173				_
9	+														13.682				4.081	2.673	1.886	1.436			0.958 0.9	
10	1.776	3.438	4.323	6.116	9.227	22.150	NaN	25.110	15.191	13.237	14.916	24.929	NaN	14.998	15.488	NaN	18.092	7.778	4.495	2.959	2.120	1.630	1.334	1.150	1.031 0.9) 48

11	1.721	3.386	4.236	5.871	8.398	15.055	22.078	17.734	13.311	11.910	12.818	17.035	22.756	13.051	13.410	20.977	12.800	7.069	4.413	3.029	2.231	1.741	1.429	1.223	1.082	0.980
12	1.644	3.181	3.890	5.104	6.624	9.169	10.860	10.835	9.844	9.207	9.243	9.891	10.505	9.543	9.880	10.238	8.030	5.631	3.961	2.900	2.220	1.772	1.470	1.260	1.110	0.998
13	1.549	2.883	3.422	4.239	5.102	6.262	6.987	7.250	7.068	6.767	6.495	6.229	6.215	6.797	7.095	6.598	5.586	4.412	3.409	2.659	2.121	1.738	1.464	1.263	1.115	1.001
14	1.439	2.549	2.941	3.480	3.989	4.607	4.999	5.216	5.211	5.059	4.810	4.462	4.342	5.040	5.237	4.756	4.187	3.526	2.903	2.382	1.973	1.660	1.422	1.241	1.100	0.990
15	1.319	2.221	2.502	2.863	3.182	3.551	3.791	3.951	3.992	3.933	3.806	3.665	3.644	3.937	4.018	3.650	3.295	2.886	2.479	2.115	1.808	1.558	1.358	1.198	1.070	0.967
16	1.193	1.918	2.123	2.372	2.583	2.825	2.986	3.108	3.163	3.160	3.120	3.078	3.079	3.192	3.192	2.917	2.682	2.411	2.134	1.874	1.643	1.445	1.280	1.143	1.030	0.936
17	1.065	1.650	1.801	1.980	2.129	2.298	2.414	2.512	2.571	2.596	2.598	2.596	2.605	2.646	2.608	2.400	2.236	2.049	1.853	1.663	1.488	1.332	1.197	1.081	0.983	0.899
18	0.940	1.416	1.531	1.665	1.775	1.900	1.990	2.070	2.128	2.164	2.186	2.199	2.211	2.226	2.177	2.018	1.900	1.765	1.623	1.481	1.347	1.224	1.114	1.016	0.931	0.857
19	0.819	1.214	1.305	1.409	1.494	1.592	1.664	1.732	1.786	1.826	1.854	1.873	1.887	1.893	1.846	1.724	1.637	1.538	1.432	1.325	1.221	1.123	1.033	0.952	0.879	0.814
20	0.706	1.041	1.115	1.199	1.267	1.348	1.408	1.466	1.515	1.554	1.584	1.606	1.621	1.626	1.587	1.493	1.427	1.353	1.272	1.190	1.108	1.030	0.957	0.889	0.827	0.771
25	0.273	0.493	0.533	0.578	0.613	0.655	0.688	0.721	0.752	0.779	0.803	0.822	0.836	0.852	0.848	0.826	0.808	0.788	0.764	0.739	0.712	0.684	0.656	0.628	0.600	0.574
30	0.054	0.271	0.299	0.329	0.352	0.380	0.401	0.423	0.443	0.461	0.478	0.492	0.503	0.520	0.527	0.525	0.521	0.515	0.508	0.499	0.489	0.479	0.467	0.455	0.442	0.429
35	0.098	0.202	0.219	0.236	0.251	0.267	0.280	0.293	0.306	0.317	0.328	0.337	0.345	0.358	0.365	0.368	0.368	0.367	0.365	0.362	0.358	0.353	0.348	0.342	0.336	0.330
40	0.140	0.183	0.192	0.201	0.208	0.217	0.224	0.231	0.239	0.245	0.251	0.257	0.262	0.270	0.275	0.278	0.279	0.279	0.278	0.277	0.276	0.273	0.271	0.268	0.265	0.261
45	0.152	0.172	0.176	0.180	0.184	0.189	0.192	0.196	0.200	0.203	0.207	0.210	0.213	0.217	0.221	0.223	0.223	0.223	0.223	0.222	0.221	0.220	0.219	0.217	0.215	0.213
50	0.150	0.160	0.161	0.164	0.165	0.168	0.169	0.171	0.173	0.175	0.177	0.178	0.180	0.182	0.184	0.185	0.185	0.185	0.185	0.185	0.184	0.183	0.182	0.181	0.180	0.179
60	0.131	0.133	0.133	0.134	0.134	0.135	0.135	0.135	0.136	0.136	0.137	0.137	0.137	0.137	0.138	0.137	0.137	0.137	0.137	0.136	0.136	0.135	0.135	0.134	0.133	0.132

备注: X 为距线路中心的距离, Y 为距离地面的高度。

表 3-16 新建 220kV 单回架空线路(导线垂直)并行段工频磁感应强度空间分布(µT)

N 11	1.5	10	1.0	14	1.5	491 ᡄ	1.7	10	10	20	31	22	71 14	24	21 1441	ر بعدر عدره	27	20	20	20	2.1	22	22
XX	1.5	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
-60	0.751	0.820	0.825	0.829	0.833	0.837	0.840	0.843	0.846	0.848	0.849	0.850	0.851	0.851	0.851	0.850	0.849	0.848	0.846	0.843	0.840	0.837	0.833
-50	1.015	1.148	1.159	1.167	1.176	1.183	1.190	1.196	1.202	1.206	1.209	1.212	1.213	1.214	1.214	1.213	1.211	1.207	1.203	1.199	1.193	1.186	1.179
-45	1.198	1.390	1.406	1.418	1.431	1.443	1.453	1.463	1.471	1.477	1.483	1.487	1.490	1.491	1.491	1.489	1.486	1.481	1.475	1.468	1.460	1.450	1.439
-40	1.429	1.714	1.739	1.759	1.779	1.797	1.814	1.829	1.842	1.853	1.862	1.869	1.873	1.875	1.875	1.873	1.868	1.862	1.852	1.841	1.828	1.813	1.795
-35	1.721	2.161	2.202	2.234	2.267	2.298	2.326	2.352	2.374	2.393	2.409	2.421	2.429	2.434	2.434	2.431	2.423	2.412	2.397	2.379	2.357	2.332	2.303
-30	2.093	2.796		2.922	2.981	3.036	3.087	3.134	3.175	3.211	3.240	3.264	3.280	3.289	3.292	3.286	3.274	3.255	3.229	3.196	3.157	3.112	3.062
-25	2.560	3.728	3.858	3.962	4.075	4.182	4.283	4.376	4.461	4.534	4.596	4.645	4.681	4.702	4.709	4.701	4.678	4.641	4.590	4.526	4.450	4.363	4.266
-20	3.126	5.138	5.400	5.616	5.855	6.088	6.312	6.522	6.715	6.885	7.030	7.147	7.232	7.286	7.306	7.292	7.245	7.165	7.053	6.912	6.744	6.552	6.340
-19	3.250	5.500	5.805	6.059	6.341	6.618	6.885	7.137	7.368	7.573	7.747	7.887	7.991	8.056	8.081	8.065	8.010	7.915	7.783	7.614	7.414	7.185	6.933
-18	3.375	5.895	6.252	6.551	6.886	7.217	7.539	7.843	8.122	8.370	8.580	8.750	8.875	8.953	8.984	8.967	8.902	8.790	8.632	8.431	8.190	7.916	7.614
-17	3.502	6.324	6.744	7.099	7.500	7.900	8.289	8.659	8.999	9.301	9.556	9.761	9.912	10.006	10.044	10.025	9.949	9.816	9.628	9.387	9.097	8.765	8.399
-16	3.631	6.790	7.287	7.711	8.194	8.681	9.158	9.611	10.029	10.398	10.710	10.958	11.138	11.252	11.298	11.277	11.188	11.032	10.807	10.517	10.165	9.761	9.314
-15	3.759	7.294	7.884	8.394	8.983	9.581	10.171	10.735	11.253	11.708	12.088	12.387	12.602	12.735	12.790	12.767	12.667	12.484	12.218	11.868	11.438	10.940	10.389
-14	3.886	7.836	8.539	9.159	9.882	10.626	11.366	12.076	12.726	13.292	13.756	14.112	14.362	14.514	14.577	14.555	14.444	14.238	13.926	13.504	12.977	12.357	11.666
-13	4.011	8.411	9.255	10.012	10.911	11.850	12.795	13.704	14.532	15.240	15.806	16.222	16.501	16.663	16.729	16.710	16.600	16.379	16.024	15.519	14.866	14.083	13.204
-12	4.132	9.013	10.028	10.961	12.093	13.299	14.529	15.718	16.793	17.691	18.375	18.844	19.126	19.271	19.328	19.322	19.238	19.031	18.648	18.052	17.237	16.229	15.086
-11	4.250	9.627	10.850	12.007	13.451	15.030	16.674	18.274	19.706	20.861	21.678	22.165	22.387	22.449	22.464	22.492	22.497	22.374	22.009	21.323	20.293	18.963	17.431
-10	4.362	10.228	11.698	13.140	15.005	17.121	19.387	21.625	23.602	25.115	26.067	26.489	26.508	26.332	26.220	26.333	26.574	26.691	26.452	25.699	24.377	22.556	20.422
-9	4.468	10.774	12.529	14.325	16.760	19.663	22.914	26.204	29.072	31.102	32.147	32.329	31.879	31.119	30.637	30.982	31.809	32.468	32.567	31.830	30.098	27.473	24.336
-8	4.569	11.208	13.266	15.485	18.674	22.747	27.636	32.826	37.286	40.048	40.974	40.587	39.338	37.384	35.660	36.827	38.974	40.580	41.391	40.941	38.653	34.574	29.608
-7	4.664	11.452	13.794	16.470	20.600	26.386	34.128	43.182	50.932	54.484	54.277	52.653	50.777	48.048	43.315	46.806	50.057	52.439	54.624	55.535	52.763	45.631	36.883
-6	4.754	11.415	13.953	17.041	22.191	30.266	42.999	61.280	77.965	80.257	74.162	69.533	68.885	71.223	72.250	70.230	68.103	69.124	74.270	81.320	80.426	64.784	46.832
-5	4.842	11.013	13.576	16.895	22.849	33.263	53.313	96.579	158.04	131.03	99.429	88.178	92.516	118.89	155.36	118.67	92.157	87.598	98.819	131.28	161.34	101.60	58.361
-4	4.930	10.198	12.545	15.794	21.951	33.386	57.969	135.26	NaN	188.41	114.38	97.536	105.80	170.73	NaN	172.66	106.43	96.696	112.17	185.03	NaN	140.27	63.400
-3	5.021	8.982	10.856	13.730	19.417	29.827	50.187	94.403	158.51	133.33	101.53	89.334	92.032	116.26	153.59	120.25	93.745	87.925	97.225	126.54	152.78	94.992	54.196
-2	5.118	7.456	8.625	10.977	15.955	24.524	38.523	59.163	79.148	83.805	78.040	72.224	69.072	67.938	70.921	73.487	70.917	69.621	71.697	75.234	71.740	56.305	40.168
-1	5.225	5.835	6.024	7.989	12.615	19.804	29.856	42.093	53.298	59.342	59.900	57.440	53.471	47.944	47.192	52.240	53.525	52.841	51.448	48.905	43.849	36.413	28.884
0	5.346	4.623	3.678	5.805	10.409	16.751	24.693	33.444	41.336	46.576	48.539	47.836	45.439	42.651	41.814	42.668	42.486	40.720	37.760	33.896	29.396	24.804	20.763
1	5.481	4.301	3.964	5.757	9.900	15.583	22.270	29.210	35.362	39.754	41.961	42.199	41.114	39.591	38.395	37.306	35.455	32.484	28.635	24.407	20.389	17.122	14.824
2	5.632	4.776	4.577	6.935	10.984	16.182	22.003	27.772	32.767	36.425	38.531	39.218	38.828	37.753	36.201	34.030	30.965	26.999	22.487	17.999	14.156	11.527	10.308
3	5.796	6.837	7.313	9.693	13.642	18.457	23.592	28.438	32.478	35.435	37.301	38.191	38.191	37.301	35.435	32.478	28.438	23.592	18.457	13.642	9.693	7.148	6.837
4	5.970	10.308	11.724	14.156	17.999	22.487	26.999	30.965	34.030	36.201	37.753	38.828	39.218	38.531	36.425	32.767	27.772	22.003	16.182	10.984	6.935	4.411	4.776
5	6.148	14.824	17.405	20.389	24.407	28.635	32.484	35.455	37.306	38.395	39.591	41.114	42.199	41.961	39.754	35.362	29.210	22.270	15.583	9.900	5.757	3.901	4.301
6	6.321	20.763	25.248	29.396	33.896	37.760	40.720	42.486	42.668	41.814		45.439					33.444		16.751	10.409	5.805	3.744	4.623
7	6.479	28.884	37.203	43.849	48.905	51.448	52.841	53.525	52.240	47.192	47.944	53.471	57.440	59.900	59.342	53.298	42.093	29.856	19.804	12.615	7.989	5.938	5.835
8	6.612					71.697				70.921		69.072	72.224	78.040	83.805		59.163				10.977	8.458	7.456
9	6.711	54.196										92.032					94.403					10.626	8.982
10	6.768	63.400										105.80					135.26					12.272	
	1 00					1 /	1. 5.070				1 3., 3										, , .		

11	6.779	58.361	107.94	161.33	131.28	98.819	87.598	92.157	118.67	155.36	118.89	92.516	88.178	99.429	131.03	158.04	96.579	53.313	33.263	22.849	16.895	13.287	11.013
12	6.740	46.832	66.698	80.426	81.320	74.270	69.124	68.103	70.230	72.250	71.223	68.885	69.533	74.162	80.257	77.965	61.280	42.999	30.266	22.191	17.041	13.675	11.415
13	6.655	36.883	46.476	52.763	55.535	54.624	52.439	50.057	46.806	43.315	48.048	50.777	52.653	54.277	54.484	50.932	43.182	34.128	26.386	20.600	16.470	13.544	11.452
14	6.526	29.608	35.041	38.653	40.941	41.391	40.580	38.974	36.827	35.660	37.384	39.338	40.587	40.974	40.048	37.286	32.826	27.636	22.747	18.674	15.485	13.052	11.208
15	6.361	24.336	27.766	30.098	31.830	32.567	32.468	31.809	30.982	30.637	31.119	31.879	32.329	32.147	31.102	29.072	26.204	22.914	19.663	16.760	14.325	12.351	10.774
16	6.166	20.422	22.756	24.377	25.699	26.452	26.691	26.574	26.333	26.220	26.332	26.508	26.489	26.067	25.115	23.602	21.625	19.387	17.121	15.005	13.140	11.552	10.228
17	5.949	17.431	19.107	20.293	21.323	22.009	22.374	22.497	22.492	22.464	22.449	22.387	22.165	21.678	20.861	19.706	18.274	16.674	15.030	13.451	12.007	10.731	9.627
18	5.717	15.086	16.337	17.237	18.052	18.648	19.031	19.238	19.322	19.328	19.271	19.126	18.844	18.375	17.691	16.793	15.718	14.529	13.299	12.093	10.961	9.930	9.013
19	5.477	13.204	14.166	14.866	15.519	16.024	16.379	16.600	16.710	16.729	16.663	16.501	16.222	15.806	15.240	14.532	13.704	12.795	11.850	10.911	10.012	9.174	8.411
20	5.233	11.666	12.422	12.977	13.504	13.926	14.238	14.444	14.555	14.577	14.514	14.362	14.112	13.756	13.292	12.726	12.076	11.366	10.626	9.882	9.159	8.473	7.836
25	4.080	6.933	7.209	7.414	7.614	7.783	7.915	8.010	8.065	8.081	8.056	7.991	7.887	7.747	7.573	7.368	7.137	6.885	6.618	6.341	6.059	5.777	5.500
30	3.159	4.590	4.713	4.803	4.892	4.966	5.025	5.068	5.094	5.103	5.094	5.069	5.027	4.969	4.896	4.810	4.712	4.603	4.486	4.362	4.232	4.099	3.964
35	2.473	3.258	3.320	3.366	3.410	3.447	3.477	3.498	3.512	3.518	3.515	3.504	3.485	3.458	3.424	3.383	3.336	3.283	3.225	3.162	3.096	3.026	2.954
40	1.968	2.431	2.465	2.490	2.515	2.535	2.552	2.564	2.572	2.576	2.575	2.570	2.561	2.547	2.529	2.508	2.483	2.454	2.423	2.388	2.351	2.312	2.271
45	1.594	1.882	1.903	1.918	1.933	1.945	1.955	1.963	1.968	1.970	1.970	1.968	1.963	1.955	1.945	1.933	1.918	1.902	1.883	1.863	1.841	1.817	1.792
50	1.312	1.5008	1.514	1.5236	1.533	1.5409	1.5473	1.5522	1.5555	1.5573	1.5574	1.5561	1.5531	1.5487	1.5427	1.5353	1.5265	1.5163	1.5048	1.4921	1.4782	1.4633	1.4473
60	0.928	1.0183	1.0244	1.0289	1.0332	1.0369	1.0399	1.0422	1.0439	1.0448	1.0451	1.0447	1.0435	1.0417	1.0392	1.0361	1.0323	1.0278	1.0228	1.0171	1.0109	1.0041	0.9968

备注: X 为距线路中心的距离, Y 为距离地面的高度。

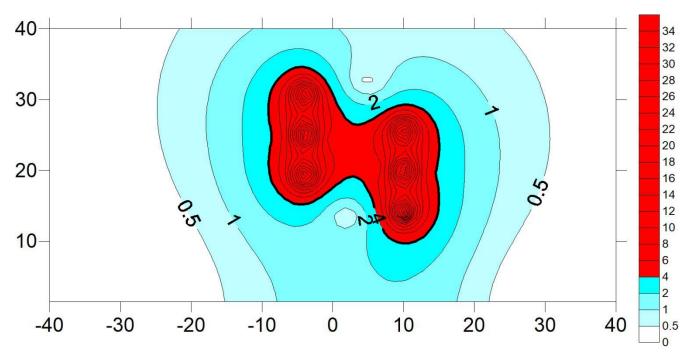


图 3-14 220kV 单回架空线路(导线垂直)并行段工频电场强度空间分布等值线图(kV/m)

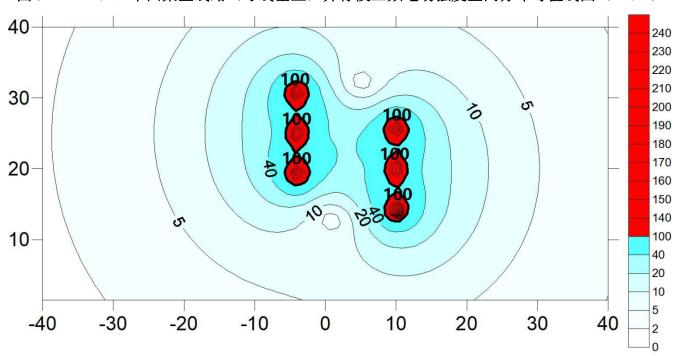


图 3-15 220kV 单回架空线路(导线垂直)并行段工频磁感应强度空间分布等值线图 (μT) ①工频电场空间分布分析

经预测,新建 220kV 单回架空线路(导线垂直)并行段在采用最不利塔型及最低导线对地高度时,在距离地面(9~35)m 高度范围内,距离导线地面投影中心(-10~16)m 以内的部分区域超过 4000V/m 标准限值,其他区域均满足标准要求。因此,采用最不利塔型及最低导线对地高度时,在不考虑风偏的情况下,新建 220kV 单回架空线路(导线垂直)并行段需与沿

线环境保护目标建筑的水平距离至少为 6m(10m-4m=6m, 16-10m=6m, 取 6m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 5m(14m-9m=5m)(满足二者条件之一即可)。

②工频磁场空间分布分析

经预测,新建 220kV 单回架空线路(导线垂直)并行段在采用最不利塔型及最低导线对地高度时,在距离地面(12~33)m 高度范围内,距离导线地面投影中心(-6~12)m 范围内的部分区域超过 100μT 标准限值,其他区域均满足标准要求。因此,采用最不利塔型及最低导线对地高度时,在不考虑风偏的情况下,新建 220kV 单回架空线路(导线垂直)并行段需与沿线环境保护目标建筑的水平距离至少为 2m(6m-4m=2m,12-10m=2m,取 2m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 2m(14m-12m=2m)(满足二者条件之一即可)。

③结论

综合上述分析,新建220kV 单回架空线路(导线垂直)并行段在采用最不利塔型及最低导线对地高度时,在不考虑风偏的情况下,新建220kV 单回架空线路(导线垂直)并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为6m,或与下相导线线下垂直距离至少为5m(满足二者条件之一即可)。

3.2.9 新建 110kV 架空线路(非并行段)电磁环境影响评价

3.2.9.1预测塔型选择

根据设计资料,110kV 大宏线迁改工程新建3基杆塔均为110DB21S-SJ1塔型,本评价选取110DB21S-SJ1塔进行电磁环境影响预测。塔形预测参数详情见表3-17。

3.2.9.2预测高度的选取

根据设计资料,本项目新建110kV 架空线路段最低导线对地高度约11m,本评价从最不利角度最低导线对地高度均按11m 计算,详见附图5。

3.2.9.3电流的选取

线路计算电流选取裸导线的安全载流量(持续容许负荷 A)进行保守预测,本评价新建110kV 架空线路段从最不利角度按667A 进行计算,预测参数选取见表3-17。

表 3-17 新建 110kV 架空线路(非并行段)预测参数一览表

全教 全対 接受 接受 接受 接受 接受	4-21	A.W.
搭型		
导线型号 JL3/G1A-300/25 线路电压® 110kV (环保计算电压 115.5kV) 导线排列方式 垂直排列(双回塔单边挂线) 分裂数 单导线 线路计算电流 (A) 667 (裸导线的安全载流量) 导线半径 (cm) 1.19 下相线导线对地最小距离 (m) ® 11 A (3.4, 19.2) B (4.0, 15) C (3.5, 11) 300		
线路电压 [©]		
导线排列方式 垂直排列(双回塔单边挂线) 分裂数 667 (裸导线的安全载流量) 号线半径 (cm) 1.19 下相线导线对地最小距离 (m) [©] 11 A (3.4, 19.2) B (4.0, 15) C (3.5, 11) 200		
分裂数 単导线 接路 接路 接路 接路 接路 接路 接路 接		
线路计算电流 (A) 667 (裸导线的安全载流量) 9线半径 (cm) 1.19		
导线半径 (cm) 1.19 下相线导线对地最小距离 (m) 11 A (3.4, 19.2) B (4.0, 15) C (3.5, 11) 200 预测塔型 B		
下相线导线对地最小距离(m) [®] A (3.4, 19.2) 预测坐标 B (4.0, 15) C (3.5, 11) 预测塔型		
新瀬塔型 A (3.4, 19.2) B (4.0, 15) C (3.5, 11)		
預測坐标	相级守线对地域行业内(III)	
(C) (3.5, 11) (3.5, 11) (4.5)	预测坐标	
万測塔型	17/1/1-17/1	
110DB21S-SJ1 各注:①环保计算由压为额定由压的 1.05 倍:②根据设计单位提供的平断面确定。		000 000 000 000 000 000 000 000 000 00

备注:①环保计算电压为额定电压的 1.05 倍;②根据设计单位提供的平断面确定。

3.2.9.4 预测内容

根据选择的塔型、电压、电流及最低导线对地距离,进行工频电场、工频磁场预测计算,以确定本工程工频电场、工频磁场影响程度及范围,同时,针对评价范围内距离线路最近的环

境保护目标进行预测计算。

3.2.9.5 新建 110kV 架空线路(非并行段)预测结果及分析

(1) 工频电场强度及工频磁感应强度预测结果

以最不利塔型 110DB21S-SJ1 为预测塔型, 预测导线对地高度从 11m 开始计算, 以弧垂最大处线路中心的地面投影为预测原点,沿垂直于线路方向进行, 预测点间距为 5m(距线路中心投影处 15m 以内预测点间距为 1m),顺序至边导线外 30m 为止,预测离地面 1.5m 处的工频电场强度、工频磁感应强度。计算结果见下表及图。

表 3-18 新建 110kV 架空线路(非并行段)工频电场强度及工频磁感应强度预测结果

	<u> </u>	时(非开行权)工 <u></u> 一次电场强度	DB21S-SJ1
导线高	5度(m)		11m
距线路中心距离	距边导线距离	离地面 1.5m 处工频电场强度 (单位: V/m)	离地面 1.5m 处工频磁感应强度 (单位:μT)
-35	边导线外 31m	57.3	0.565
-30	边导线外 26m	65	0.720
-25	边导线外 21m	70.7	0.943
-20	边导线外 16m	68.8	1.274
-15	边导线外 11m	49.5	1.786
-14	边导线外 10m	44.1	1.919
-13	边导线外 9m	41.5	2.065
-12	边导线外 8m	49.9	2.225
-11	边导线外 7m	68.5	2.400
-10	边导线外 6m	94.5	2.592
-9	边导线外 5m	127.7	2.801
-8	边导线外 4m	168.6	3.027
-7	边导线外 3m	217.5	3.273
-6	边导线外 2m	274.8	3.536
-5	边导线外 1m	340.6	3.815
-4	边导线内	414.3	4.108
-3	边导线内	494.5	4.407
-2	边导线内	578.6	4.705
-1	边导线内	662.6	4.991
0	边导线内	741.1	5.249
1	边导线内	808	5.464
2	边导线内	856.6	5.618
3	边导线内	881.6	5.699
4	边导线内	880	5.698
5	边导线外 1m	852	5.616
6	边导线外 2m	800.9	5.460
7	边导线外 3m	732.1	5.244
8	边导线外 4m	652.3	4.984
9	边导线外 5m	567.7	4.697
10	边导线外 6m	483.5	4.397
11	边导线外 7m	403.7	4.096

ţ		1100	DB21S-SJ1				
导线高	万度 (m)		11m				
距线路中心距离	距边导线距离	离地面 1.5m 处工频电场强度 (单位: V/m)	离地面 1.5m 处工频磁感应强度 (单位: μT)				
12	边导线外 8m	330.5	3.803				
13	边导线外 9m	265.4	3.523				
14	边导线外 10m	208.5	3.260				
15	边导线外 11m	159.9	3.014				
20	边导线外 16m	26.4	2.054				
25	边导线外 21m	52.4	1.444				
30	边导线外 26m	64	1.054				
35	边导线外 31m	62.5	0.795				
最	:大值	881.6	5.699				
标准限值(公介	众曝露控制限值)	4000	100				

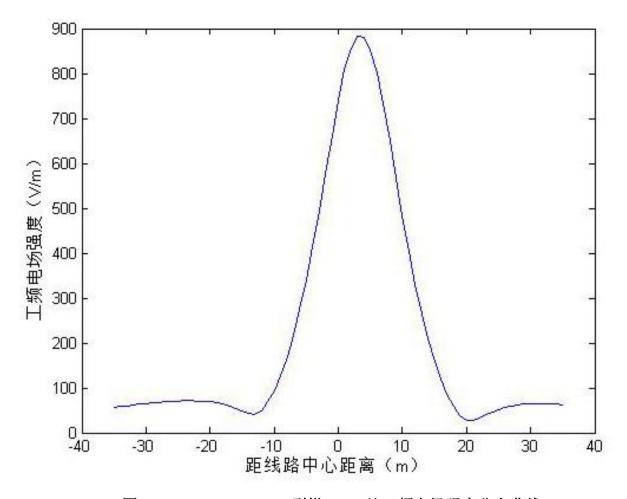


图 3-16 110DB21S-SJ1 型塔 1.5m 处工频电场强度分布曲线

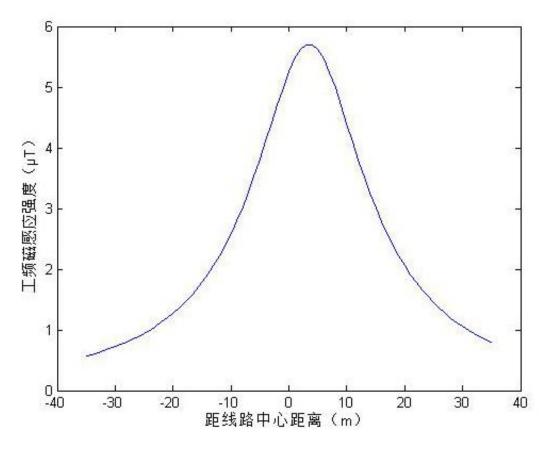


图 3-17 110DB21S-SJ1 型塔 1.5m 处工频磁感应强度分布曲线

经预测,新建 110kV 架空线路(非并行段)在采用最不利塔型 110DB21S-SJ1 型塔,导线 JL3/G1A-300/25,下相线导线对地高度为 11m 时,线下地面 1.5m 高处工频电场强度最大值为 881.6V/m,最大值出现在距线路中心 3m 处,工频磁感应强度最大值为 5.699 μT,最大值出现在距线路中心 3m 处,满足《电磁环境控制限值》(GB 8702-2014)规定的 4000V/m 和 100μT 标准要求。

因线路沿线存在多条线路并行,线路沿线工频电场强度现状监测值最大为 1855V/m,从最不利角度分析,新建 110kV 架空线路(非并行段)地面 1.5m 高处工频电场强度最大预测值(881.6V/m)叠加最大现状监测值后仍远小于 10kV/m,因此新建 110kV 架空线路(非并行段)经过耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所时能够满足电磁环境限值10kV/m 标准要求。

(2) 工频电场强度及工频磁感应强度空间分布

本评价对新建 110kV 架空线路(非并行段)在采用最不利塔型 110DB21S-SJ1 型塔、导线 JL3/G1A-300/25,导线对地 11m 时进行了空间分布预测,工频电磁场空间分布详见下表及图。

表 3-19 新建 110kV 架空线路(非并行段)导线对地 11m 工频电场强度空间分布(kV/m)

XY	1.5	4.5	7.5	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
-35	0.057	0.058	0.058	0.058	0.058	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.058	0.058	0.058
-30	0.065	0.066	0.068	0.068	0.068	0.069	0.070	0.070	0.071	0.071	0.071	0.072	0.072	0.072	0.072	0.072	0.072	0.071	0.071
-25	0.071	0.073	0.078	0.079	0.080	0.082	0.084	0.085	0.087	0.088	0.089	0.090	0.091	0.092	0.092	0.092	0.092	0.091	0.091
-20	0.069	0.077	0.090	0.094	0.096	0.101	0.105	0.109	0.113	0.116	0.119	0.121	0.123	0.124	0.125	0.125	0.125	0.124	0.123
-15	0.050	0.074	0.111	0.121	0.127	0.138	0.149	0.157	0.166	0.172	0.178	0.182	0.186	0.188	0.188	0.188	0.186	0.184	0.180
-10	0.095	0.135	0.200	0.220	0.231	0.252	0.273	0.289	0.306	0.317	0.327	0.333	0.336	0.336	0.333	0.327	0.319	0.309	0.296
-9	0.128	0.169	0.238	0.260	0.272	0.296	0.320	0.338	0.357	0.370	0.380	0.387	0.389	0.388	0.383	0.374	0.363	0.349	0.333
-8	0.169	0.211	0.287	0.312	0.326	0.352	0.380	0.401	0.422	0.436	0.447	0.454	0.456	0.452	0.444	0.432	0.416	0.397	0.376
-7	0.218	0.264	0.349	0.377	0.393	0.424	0.457	0.480	0.505	0.521	0.533	0.539	0.540	0.533	0.521	0.503	0.481	0.455	0.427
-6	0.275	0.327	0.426	0.460	0.479	0.517	0.555	0.583	0.612	0.630	0.643	0.649	0.647	0.637	0.618	0.593	0.561	0.526	0.489
-5	0.341	0.402	0.523	0.565	0.589	0.636	0.684	0.718	0.751	0.772	0.786	0.791	0.786	0.770	0.744	0.707	0.663	0.614	0.563
-4	0.414	0.489	0.644	0.700	0.731	0.792	0.854	0.896	0.936	0.959	0.974	0.979	0.970	0.948	0.909	0.857	0.793	0.724	0.653
-3	0.495	0.589	0.796	0.873	0.916	1.001	1.084	1.138	1.184	1.208	1.224	1.229	1.219	1.189	1.134	1.057	0.963	0.862	0.763
-2	0.579	0.699	0.986	1.098	1.163	1.289	1.407	1.476	1.525	1.545	1.558	1.568	1.563	1.528	1.452	1.335	1.192	1.041	0.898
-1	0.663	0.817	1.221	1.395	1.498	1.702	1.884	1.972	2.006	2.002	2.004	2.031	2.056	2.032	1.928	1.743	1.509	1.272	1.061
0	0.741	0.935	1.509	1.790	1.967	2.333	2.650	2.759	2.721	2.626	2.582	2.675	2.798	2.836	2.704	2.382	1.966	1.573	1.253
1	0.808	1.042	1.840	2.306	2.633	3.387	4.051	4.157	3.882	3.536	3.282	3.640	4.005	4.254	4.153	3.499	2.644	1.949	1.464
2	0.857	1.125	2.170	2.918	3.530	5.361	7.323	6.987	5.956	5.432	5.134	5.562	6.055	6.985	7.647	5.789	3.612	2.362	1.661
3	0.882	1.171	2.393	3.416	4.397	8.970	22.958	12.512	8.994	9.697	11.917	9.685	8.770	11.331	25.650	10.819	4.575	2.658	1.782
4	0.880	1.169	2.394	3.422	4.409	9.035	23.375	13.022	10.135	13.943	NaN	13.784	9.586	11.149	18.495	9.772	4.470	2.633	1.773
5	0.852	1.121	2.171	2.930	3.556	5.455	7.639	7.627	7.456	8.820	11.227	8.783	7.177	7.096	7.036	5.352	3.469	2.311	1.638
6	0.801	1.035	1.839	2.316	2.653	3.453	4.230	4.503	4.570	4.635	4.721	4.706	4.550	4.394	4.051	3.358	2.554	1.902	1.438
7	0.732	0.926	1.505	1.794	1.978	2.366	2.728	2.889	2.904	2.774	2.586	2.868	2.953	2.887	2.673	2.323	1.914	1.536	1.229
8	0.652	0.807	1.216	1.393	1.500	1.713	1.908	2.005	2.029	1.986	1.959	2.028	2.070	2.030	1.903	1.707	1.475	1.244	1.039
9	0.568	0.689	0.979	1.093	1.159	1.288	1.408	1.475	1.513	1.518	1.523	1.540	1.543	1.508	1.427	1.308	1.166	1.018	0.879
10	0.484	0.579	0.789	0.866	0.911	0.996	1.078	1.128	1.168	1.186	1.197	1.202	1.195	1.166	1.111	1.034	0.942	0.843	0.747
15	0.160	0.207	0.285	0.309	0.323	0.349	0.375	0.395	0.415	0.428	0.438	0.444	0.445	0.441	0.433	0.421	0.405	0.387	0.366
20	0.026	0.078	0.129	0.142	0.150	0.164	0.178	0.188	0.199	0.207	0.214	0.219	0.223	0.224	0.224	0.223	0.220	0.216	0.210
25	0.052	0.067	0.089	0.095	0.099	0.106	0.112	0.118	0.123	0.127	0.131	0.134	0.137	0.138	0.139	0.140	0.139	0.138	0.137
30	0.064	0.069	0.076	0.079	0.080	0.083	0.086	0.088	0.091	0.092	0.094	0.096	0.097	0.098	0.098	0.099	0.099	0.098	0.098
35	0.063	0.064	0.067	0.068	0.068	0.069	0.071	0.071	0.072	0.073	0.074	0.074	0.075	0.075	0.075	0.076	0.075	0.075	0.075

备注: X 为距线路中心的距离, Y 为距离地面的高度。

表 3-20 新建 110kV 架空线路(非并行段)导线对地 11m 工频磁感应强度空间分布(µT)

X V	1.5	4.5	7.5	8.5	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
-35	0.565	0.590	0.611	0.616	0.619	0.623	0.627	0.630	0.632	0.633	0.634	0.633	0.632	0.630	0.628	0.624	0.620	0.615	0.609
-30	0.720	0.761	0.796	0.804	0.808	0.816	0.823	0.827	0.831	0.833	0.834	0.834	0.832	0.829	0.824	0.818	0.811	0.802	0.792
-25	0.943	1.014	1.076	1.091	1.099	1.113	1.126	1.134	1.141	1.145	1.147	1.146	1.142	1.136	1.127	1.116	1.103	1.087	1.070
-20	1.274	1.406	1.528	1.558	1.574	1.602	1.628	1.645	1.661	1.668	1.672	1.670	1.662	1.650	1.632	1.609	1.582	1.551	1.516
-15	1.786	2.053	2.317	2.385	2.421	2.486	2.547	2.588	2.625	2.644	2.652	2.648	2.630	2.599	2.557	2.503	2.440	2.369	2.291
-12	2.225	2.651	3.099	3.220	3.284	3.402	3.513	3.588	3.657	3.692	3.708	3.700	3.666	3.610	3.531	3.434	3.320	3.193	3.056
-11	2.400	2.903	3.444	3.592	3.671	3.817	3.956	4.049	4.135	4.179	4.200	4.189	4.147	4.077	3.979	3.857	3.716	3.559	3.391
-10	2.592	3.186	3.846	4.029	4.127	4.309	4.484	4.602	4.710	4.766	4.792	4.779	4.726	4.637	4.514	4.361	4.184	3.988	3.781
-9	2.801	3.506	4.316	4.545	4.668	4.898	5.120	5.271	5.409	5.481	5.515	5.498	5.431	5.317	5.160	4.965	4.741	4.495	4.236
-8	3.027	3.869	4.871	5.161	5.317	5.611	5.896	6.090	6.269	6.362	6.405	6.384	6.298	6.151	5.949	5.699	5.412	5.099	4.771
-7	3.273	4.279	5.530	5.901	6.102	6.483	6.854	7.107	7.340	7.461	7.519	7.492	7.381	7.190	6.926	6.600	6.227	5.823	5.405
-6	3.536	4.743	6.320	6.802	7.064	7.565	8.054	8.387	8.693	8.853	8.928	8.895	8.751	8.502	8.154	7.723	7.231	6.701	6.159
-5	3.815	5.265	7.274	7.909	8.259	8.928	9.583	10.027	10.431	10.640	10.740	10.699	10.515	10.188	9.725	9.147	8.485	7.779	7.065
-4	4.108	5.849	8.437	9.291	9.766	10.682	11.574	12.170	12.701	12.971	13.101	13.056	12.828	12.403	11.782	10.991	10.081	9.117	8.159
-3	4.407	6.494	9.867	11.044	11.707	12.995	14.240	15.045	15.728	16.057	16.218	16.182	15.922	15.389	14.554	13.446	12.156	10.802	9.488
-2	4.705	7.192	11.637	13.306	14.267	16.152	17.947	19.036	19.857	20.198	20.367	20.382	20.165	19.557	18.438	16.835	14.927	12.954	11.104
-1	4.991	7.924	13.830	16.281	17.742	20.668	23.391	24.854	25.656	25.802	25.874	26.070	26.158	25.661	24.197	21.755	18.753	15.735	13.055
0	5.249	8.650	16.505	20.241	22.604	27.562	32.084	33.987	34.148	33.408	32.994	33.793	34.978	35.252	33.495	29.436	24.237	19.329	15.346
1	5.464	9.308	19.601	25.445	29.535	39.097	47.943	49.986	47.499	44.029	41.537	44.594	48.767	51.857	50.720	42.794	32.340	23.820	17.856
2	5.618	9.820	22.705	31.645	38.947	60.837	84.994	82.036	70.248	63.436	56.492	64.022	71.271	83.385	92.136	70.159	43.912	28.737	20.189
3	5.699	10.103	24.828	36.731	48.084	100.818	263.114	144.306	102.894	108.382	129.853	107.587	100.595			130.278	55.382	32.254	21.625
4	5.698	10.103	24.857	36.810	48.232	101.466	267.205	149.394	114.820	154.387	NaN	151.880	108.895		219.739	117.413	54.042	31.934	21.509
5	5.616	9.821	22.773	31.821	39.253	61.803	88.083	88.327	85.354	98.553	122.637	97.286	81.993	83.173	83.879	64.473	42.029	28.075	19.910
6	5.460	9.308	19.673	25.617	29.812	39.797	49.701	53.311	53.919	53.520	52.103	53.328	53.110	52.276	48.793	40.744	31.116	23.194	17.531
7	5.244	8.646	16.556	20.357	22.780	27.943	32.869	35.220	35.752	34.422	32.231	34.477	35.688	35.120	32.683	28.483	23.496	18.845	15.046
8	4.984	7.916	13.852	16.334	17.821	20.822	23.651	25.166	25.828	25.584	25.265	25.623	25.865	25.265	23.656	21.186	18.269	15.373	12.802
9	4.697	7.180	11.634	13.312	14.279	16.178	17.972	19.023	19.709	19.877	19.903	19.914	19.746	19.148	18.022	16.437	14.583	12.679	10.896
10	4.397	6.478	9.845	11.019	11.680	12.958	14.176	14.937	15.532	15.778	15.869	15.812	15.563	15.046	14.229	13.148	11.897	10.588	9.318
11	4.096	5.830	8.405	9.251	9.721	10.620	11.484	12.045	12.522	12.746	12.837	12.775	12.547	12.133	11.530	10.762	9.880	8.946	8.019
12	3.803	5.245	7.236	7.863	8.206	8.860 5.557	9.491 5.832	9.910	10.280 6.185	10.462	10.538	10.485 6.282	10.300	9.979	9.529	8.968	8.326 5.327	7.641 5.023	6.949 4.704
15 20	3.014 2.054	3.848 2.413	4.835 2.780	5.119 2.877	5.271 2.928	3.021	3.109	6.017 3.168	3.221	6.271 3.248	6.308 3.259	3.251	6.196 3.224	6.050 3.179	5.851 3.116	5.607 3.038	2.947	2.845	2.735
25	1.444	1.615	1.776	1.816	1.837	1.875	1.910	1.933	1.954	1.964	1.969	1.966	1.956	1.938	1.913	1.882	1.845	1.803	1.757
30	1.054	1.013	1.776	1.816	1.857	1.873	1.910	1.933	1.954	1.311	1.313	1.312	1.936	1.938	1.913	1.882	1.845	1.803	1.737
35	0.795	0.845	0.888	0.899	0.904	0.913	0.922	0.928	0.933	0.935	0.936	0.935	0.933	0.929	0.923	0.915	0.906	0.896	0.884
			l	0.899 3 7 M -1				0.928	0.955	0.933	0.930	0.955	0.933	0.929	0.923	0.913	0.900	0.890	0.004

备注: X 为距线路中心的距离, Y 为距离地面的高度。

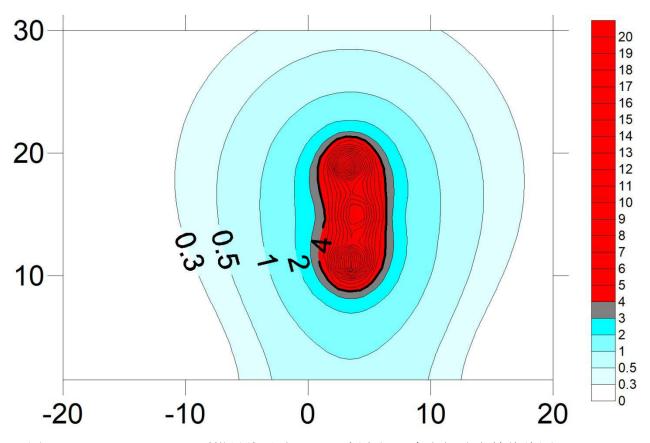


图 3-18 110DB21S-SJ1 型塔导线对地 11m 工频电场强度空间分布等值线图(kV/m)

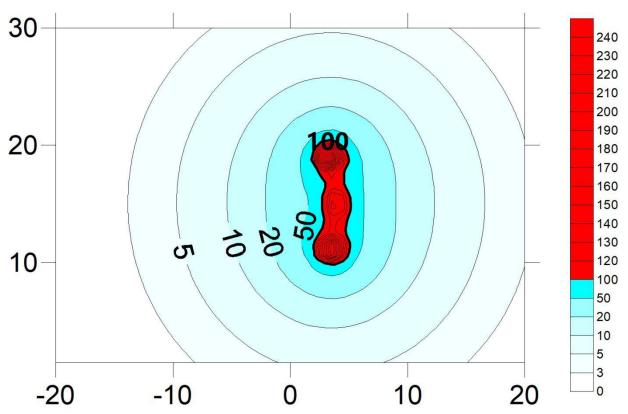


图 3-19 110DB21S-SJ1 型塔导线导线对地 11m 工频磁感应强度空间分布等值线图 (μT)

①工频电场空间分布分析

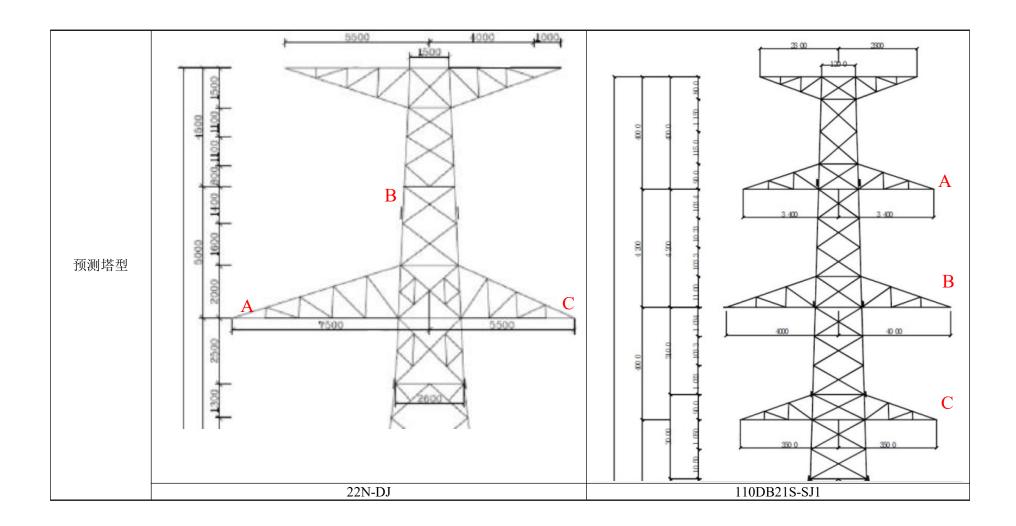
经预测,新建 110kV 架空线路(非并行段)在采用最不利塔型 110DB21S-SJ1、下相线导线对地高度 11m 时,在距离地面(8~22)m 高度范围内,距离导线地面投影中心(0~7)m 以内的部分区域超过 4000V/m 标准限值,其他区域均满足标准要求。因此,以 22N-DJ 为预测塔型,在不考虑风偏的情况下,新建 110kV 架空线路(非并行段)需与沿线环境保护目标建筑的水平距离至少为 3m(7m-4m=3m,取 3m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 3m(11m-8m=3m)(满足二者条件之一即可)。

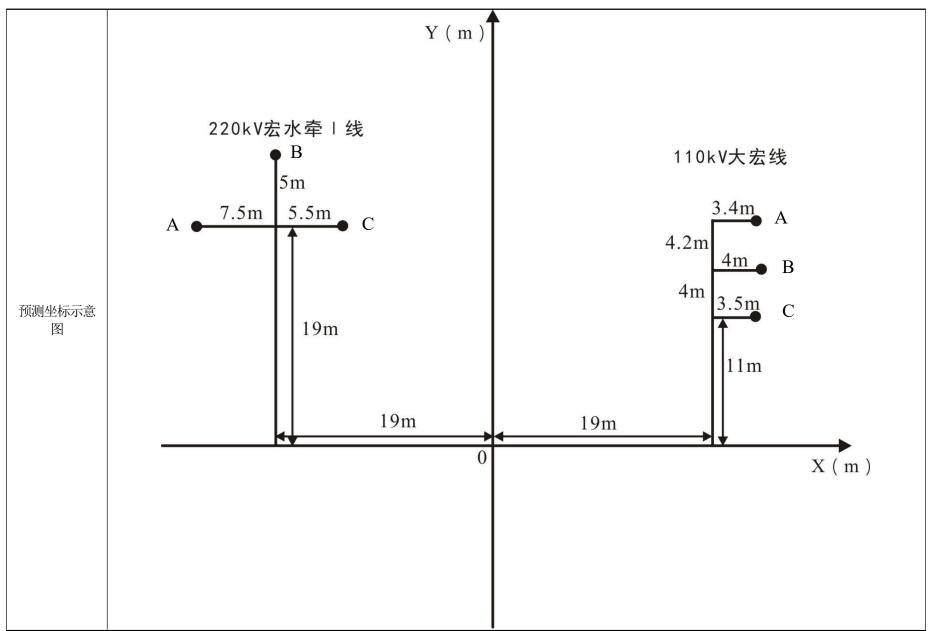
②工频磁场空间分布分析

经预测,新建 110kV 架空线路(非并行段)在采用最不利塔型 110DB21S-SJ1、下相线导线对地高度 11m 时,在距离地面(9~21)m 高度范围内,距离导线地面投影中心(2~6)m 范围内的部分区域超过 100μT 标准限值,其他区域均满足标准要求。因此,在不考虑风偏的情况下,新建 110kV 架空线路(非并行段)需与沿线环境保护目标建筑的水平距离至少为 2m(6m-4m=2m,取 2m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 2m(11m-9m=2m)(满足二者条件之一即可)。

③结论

综合上述分析,新建 110kV 架空线路(非并行段)在采用最不利塔型 110DB21S-SJ1 为预测塔型,在严格按照初步设计断面图的设计高度(导线对地不低于 11m)前提下,在不考虑风偏的情况下,新建 110kV 架空线路(非并行段)需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 3m,或与下相导线线下垂直距离至少为 3m(满足二者条件之一即可)。


3.2.10 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)电磁环境影响评价


本次评价对新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)电磁环境影响预测从最不利角度选取并行间距最小,两条线路中导线对地高度最低以及最不利塔型进行预测。

(1) 预测参数

表 3-21 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)电磁环境预测参数一览表

名称	新建 110kV 架空线路(与 220k	V 宏水牵 I 线并行段)
名	220kV 宏水牵 I 线	新建 110kV 架空线路
最小并行间距	38m(线路中心	间距)
导线型号	JL3/G1A-400/35 型导线	JL3/G1A-300/25 型导线
电压 ^①	220kV (环保计算电压 231kV)	110kV(环保计算电压 115.5kV)
导线排列方式	三角排列	垂直排列(双回塔单边挂线)
分裂数	单导线	单导线
线路计算电流	794A (裸导线的安全载流量)	667A (裸导线的安全载流量)
导线半径	1.341cm	1.19cm
导线对地最小 距离 [©]	19m	11m
预测坐标 [®]	B (-19, 24); A (-26.5, 19); C (-13.5, 19)	A (22.4, 19.2) B (23, 15) C (22.5, 11)

备注:①环保计算电压为额定电压的 1.05 倍;②根据现场调查及设计单位提供的断面图确定。③以并行间距中心为原点,预测塔型垂直间距为最小导线对地高度,水平间距增加并行间距。

(2) 预测结果

新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)以最不利塔型进行预测,以并行线路并行间距中心为预测原点,沿垂直于线路方向进行,预测点间距为 1m,至少预测至新建 110kV 单回架空线路边导线外 30m 为止,预测离地面 1.5m 处的工频电场强度、工频磁感应强度。计算结果见下表及图。

表 3-21 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)电磁环境预测结果

距线路中心距离(m)	离地面 1.5m 处工频电场强度(V/m)	离地面 1.5m 处工频磁感应强度 (μT)
-70	126.3	0.700
-69	132.3	0.726
-68	138.7	0.754
-67	145.4	0.783
-66	152.7	0.814
-65	160.4	0.846
-64	168.7	0.880
-63	177.5	0.917
-62	187	0.955
-61	197.2	0.996
-60	208	1.039
-59	219.7	1.085
-58	232.2	1.133
-57	245.6	1.185
-56	260	1.240
-55	275.5	1.298
-54	292.1	1.360
-53	309.9	1.427
-52	329	1.497
-51	349.4	1.572
-50	371.3	1.653
-49	394.6	1.738
-48	419.6	1.829
-47	446.1	1.926
-46	474.2	2.030
-45	503.8	2.140
-44	535	2.257
-43	567.6	2.381
-42	601.4	2.512
-41	636.2	2.652
-40	671.5	2.798
-39	706.9	2.953
-38	741.7	3.114
-37	775.3	3.282
-36	806.6	3.455
-35	834.7	3.634
-34	858.3	3.815
-33	876.2	3.999
-32	887	4.182
-31	889.6	4.362
-30	882.7	4.536
-29	865.4	4.703

距线路中心距离(m)	离地面 1.5m 处工频电场强度(V/m)	离地面 1.5m 处工频磁感应强度 (μT)
-28	837.4	4.859
-27	798.5	5.001
-26	749.5	5.126
-25	691.7	5.233
-24	627.3	5.319
-23	560	5.382
-22	494.5	5.422
-21	438.4	5.436
-20	402.6	5.426
-19	398.8	5.390
-18	427.1	5.329
-17	474.9	5.243
-16	530.7	5.134
-15	587	5.004
-13 -14	639.1	4.853
-13	684	4.684
-13 -12	719.6	
		4.500
-11	745.2	4.303
-10	760.6	4.097
<u>-9</u>	766.1	3.884
-8	762.5	3.667
<u>-7</u>	751.1	3.450
<u>-6</u>	732.9	3.234
-5	709.4	3.023
-4	681.8	2.820
-3	651.5	2.627
-2	619.5	2.447
-1	586.9	2.284
0	554.6	2.142
1	523.4	2.025
2	494	1.936
3	467.2	1.881
4	443.5	1.860
5	423.6	1.877
6	408.1	1.933
7	397.9	2.027
8	393.5	2.162
9	395.9	2.336
10	406	2.548
11	424.5	2.797
12	452.1	3.081
13	489.4	3.395
14	536.4	3.738
15	592.6	4.103
16	656.4	4.483
17	725.3	4.867
18	795.2	5.242
19	860.9	5.591
20	915.9	5.893
21	953.9	6.128
22	969.5	6.278
23	959.7	6.333

距线路中心距离(m)	离地面 1.5m 处工频电场强度(V/m)	离地面 1.5m 处工频磁感应强度 (μT)
24	924.5	6.291
25	867.3	6.159
26	793.5	5.952
27	709.5	5.687
28	621.5	5.385
29	534.6	5.062
30	452.5	4.733
31	377.5	4.408
32	310.8	4.094
33	252.6	3.797
34	202.8	3.518
35		
	160.7	3.260
36	125.5	3.020
37	96.7	2.801
38	73.4	2.599
39	55	2.415
40	41.4	2.247
41	32.7	2.093
42	29.7	1.952
43	30.6	1.824
44	32.8	1.707
45	35.1	1.599
46	37.3	1.501
47	39	1.411
48	40.3	1.328
49	41.3	1.252
50	41.8	1.182
51	42.1	1.117
52	42.1	1.057
53	42	1.002
54	41.6	0.951
55	41.1	0.904
56	40.5	0.860
57		
	39.8	0.819
58	39.1	0.781
59	38.3	0.745
60	37.4	0.712
61	36.6	0.681
62	35.7	0.652
63	34.8	0.625
64	34	0.600
65	33.1	0.576
66	32.3	0.553
67	31.5	0.532
68	30.6	0.512
69	29.9	0.493
70	29.1	0.475
最大值	969.5	6.333
公众曝露控制限值	4000	100

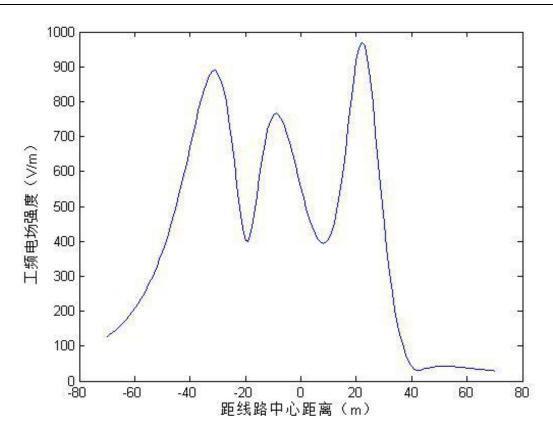


图 3-20 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段) 1.5m 处工频电场强度分布曲线

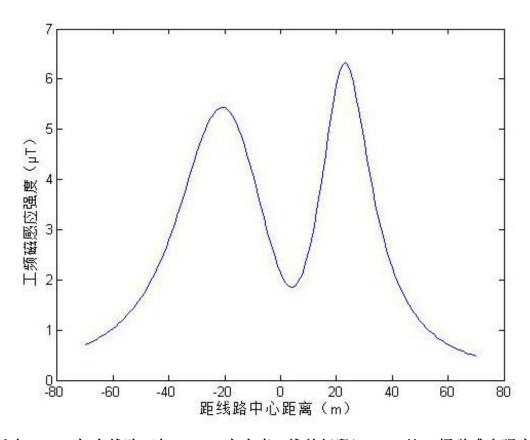


图 3-21 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段) 1.5m 处工频磁感应强度分布曲线

经预测,新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)在采用最不利塔型,下相线导线对地高度为 11m 时,线下地面 1.5m 高处工频电场强度最大值为 969.5V/m,最大值出现在距线路中心 22m 处,工频磁感应强度最大值为 6.333μT,最大值出现在距线路中心 23m 处,满足《电磁环境控制限值》(GB 8702-2014)规定的 4000V/m 和 100μT 标准要求。

因线路沿线存在多条线路并行,线路沿线工频电场强度现状监测值最大为 1855V/m,从最不利角度分析,新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)地面 1.5m 高处工频电场强度最大预测值(969.5V/m)叠加最大现状监测值后仍远小于 10kV/m,因此新建 110kV 架空线路(非并行段)经过耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所时能够满足电磁环境限值 10kV/m 标准要求。

(3) 工频电场强度及工频磁感应强度空间分布

本评价对新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)在采用最不利塔型、 JL3/G1A-300/25 导线以及导线对地高度 11m 时进行了空间分布预测,工频电磁场空间分布详见 下表及图。

表 3-22 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)工频电场强度空间分布(kV/m)

Section Sect				10 2	_	171 XL	11011	<u> </u>		1 / 7	2201	1 /4	\1×		/ 14 1/	<u>^</u>	-9X · C	1-00 177	//	.474 1	14 / 12	V / 111				
50 137 137 137 138 138 138 138 136 138	XX 1	1.5 4.5	7.5	8	9	10	11	12		14	15	16	17	18	19		21	22	23	24	-		27	28	29	30
40 6.72 6.88 6.72 6.	-70 0.	126 0.126	6 0.124	0.124	0.123	0.122	0.121	0.120	0.119	0.118	0.117	0.116	0.114	0.113	0.112	0.110	0.108	0.107	0.105	0.103	0.102	0.100	0.098	0.096	0.094	0.092
Section Sect	-50 0	371 0.37	0.369	0.368	0.367	0.366	0.364	0.361	0.358	0.355	0.351	0.347	0.342	0.336	0.330	0.323	0.316	0.308	0.300	0.291	0.282	0.273	0.264	0.254	0.245	0.235
34	-40 0.0	672 0.688	3 0.721	0.732	0.738	0.751	0.765	0.776	0.788	0.795	0.801	0.803	0.800	0.794	0.782	0.766	0.745	0.720	0.692	0.662	0.629	0.596	0.562	0.529	0.496	0.464
33 0.876 0.946 0.990 1.62 1.290 1.266 1.394 1.493 1.625 1.740 1.870 1.992 2.093 1.56 2.170 2.170 2.172 2.306 1.997 1.789 1.693 1.481 1.306 1.173 1.052 0.943 0.845 1.308 0.845 1.0890 0.981 1.192 1.281 1.338 1.406 1.636 1.802 2.040 2.268 2.555 2.865 3.164 3.392 3.480 3.392 3.159 2.850 2.250 2.219 1.943 1.700 1.490 1.307 1.149 1.013 1.013 1.019 1.018	-35 0.3	835 0.884	1 0.990	1.031	1.056	1.109	1.173	1.229	1.300	1.356	1.415	1.465	1.500	1.517	1.512	1.483	1.433	1.365	1.285	1.197	1.107	1.018	0.932	0.851	0.776	0.706
-32 0.887 0.968 1.49 1.224 1.271 1.377 1.514 1.643 1.822 1.985 1.978 2.177 2.370 2.542 2.660 2.697 2.641 2.502 2.101 2.095 1.879 1.675 1.488 1.201 1.041 0.925 1.080 0.981 1.192 1.281 1.338 1.466 1.636 1.802 2.040 2.268 2.555 2.865 3.164 3.392 3.159 3.250 2.250 2.219 1.943 1.700 1.490 1.307 1.149 1.013 0.883 0.980 1.250 1.360 1.441 1.622 1.875 1.812 1.275 2.588 3.141 3.124 1.075 0.875 1.494 1.018 1.025 1.201	-34 0.3	858 0.918	3 1.046	1.097	1.128	1.196	1.280	1.354	1.451	1.532	1.620	1.697	1.758	1.791	1.793	1.759	1.693	1.602	1.494	1.380	1.263	1.151	1.044	0.945	0.854	0.772
3-1 3-30 3-89 3-89 1-22 1-33 1-39 1-25 1-33 1-46 1-56 1-57 1-49 2-175 2-184 1-45 1-25	-33 0.3	876 0.946	5 1.099	1.162	1.200	1.286	1.394	1.493	1.625	1.740	1.870	1.992	2.093	2.156	2.170	2.127	2.036	1.907	1.759	1.603	1.451	1.306	1.173	1.052	0.943	0.845
	-32 0.3	887 0.968	3 1.149	1.224	1.271	1.377	1.514	1.643	1.822	1.985	2.177	2.370	2.542	2.660	2.697	2.641	2.502	2.310	2.095	1.879	1.675	1.488	1.321	1.172	1.041	0.925
	-31 0.3	890 0.98	1 1.192	2 1.281	1.338	1.466	1.636	1.802	2.040	2.268	2.555	2.865	3.164	3.392	3.480	3.392	3.159	2.850	2.526	2.219	1.943	1.700	1.490	1.307	1.149	1.013
	-30 0.3	883 0.986	5 1.227	1.331	1.397	1.550	1.757	1.963	2.275	2.588	3.011	3.512	4.058	4.531	4.740	4.570	4.122	3.583	3.073	2.630	2.257	1.944	1.680	1.457	1.268	1.108
	-29 0.3	865 0.980	1.250	1.369	1.444	1.622	1.867	2.118	2.511	2.928	3.534	4.342	5.379	6.482	7.059	6.606	5.576	4.564	3.748	3.114	2.616	2.217	1.892	1.622	1.398	1.209
Part	-28 0.3	837 0.962	2 1.261	1.393	1.478	1.679	1.960	2.254	2.727	3.253	4.072	5.305	7.271	10.281	12.573	10.611	7.728	5.783	4.523	3.653	3.013	2.518	2.123	1.802	1.537	1.317
Colorada	-27 0.	799 0.933	3 1.258	1.402	1.496	1.717	2.028	2.358	2.897	3.511	4.511	6.154	9.333	17.668	40.497	18.519	10.227	7.012	5.301	4.212	3.436	2.844	2.375	1.995	1.685	1.431
Column C	-26 0.	750 0.892	2 1.241	1.396	1.496	1.733	2.067	2.420	2.998	3.656	4.728	6.490	9.908	18.897	43.693	20.184	11.270	7.810	5.956	4.754	3.879	3.197	2.649	2.204	1.843	1.549
	-25 0.0	692 0.84	1 1.212	1.376	1.481	1.730	2.078	2.441	3.025	3.675	4.689	6.225	8.698	12.574	15.783	13.742	10.360	8.019	6.445	5.284	4.358	3.591	2.954	2.432	2.010	1.671
Column C	-24 0.0	627 0.782	2 1.173	1.345	1.454	1.710	2.064	2.426	2.993	3.598	4.481	5.675	7.252	9.054	10.295	10.168	9.137	7.967	6.889	5.884	4.934	4.062	3.307	2.684	2.186	1.795
-21 0.438 0.582 1.049 1.237 1.354 1.620 1.970 2.310 2.798 3.259 3.257 3.827 4.424 4.996 5.486 5.927 6.600 7.794 9.452 11.194 11.548 9.445 6.799 4.852 3.564 2.704 2.111 -20 0.403 0.529 1.025 1.215 1.333 1.600 1.950 2.287 2.767 3.215 3.757 4.311 4.811 5.179 5.380 5.998 7.919 11.059 16.729 2.131 14.440 8.366 5.405 3.788 2.805 2.160 -19 0.399 0.524 1.018 1.208 1.326 1.593 1.943 2.282 2.768 3.227 3.789 4.373 4.914 5.324 5.564 6.249 8.395 1.360 2.551 NaN -10 0.475 0.624 1.015 1.231 1.345 1.606 1.959 2.313 1.847 3.389 4.127 5.024 6.059 7.138 8.057 8.849 9.717 10.861 12.047 11.863 9.403 6.630 4.669 3.401 2.357 1.866 -15 0.587 0.733 1.106 1.270 1.375 1.623 1.968 2.329 2.999 3.556 4.568 6.113 8.631 12.671 16.296 14.712 11.642 9.517 8.018 6.275 5.488 4.360 3.420 2.688 2.134 1.719 -14 0.639 0.779 1.127 1.281 1.380 1.616 1.947 2.298 2.872 3.528 4.601 6.388 6.045 2.278 1.850 1.398 1.234 1.350 1.351 1.551 1.830 2.123 2.299 6.312 4.385 6.045 2.278 1.850 1.351 1.351 1.551 1.830 2.123 2.299 6.312 4.385 6.045 2.278 1.850 1.351 1.054 1.096 3.850 3.498 3.294 2.756 2.554 2.091 3.135 1.851 1.850 1.678 1.989 2.399 3.249 2.879 3.290 3.144 3.885 6.045 2.788 1.850 1.351 1.098 3.450 3.213 1.003 8.142 1.098 3.450 3.213 1.003 8.142 1.099 3.294 2.756 2.316 1.950 1.647 1.395 1.186 1.079 1.0	-23 0.3	560 0.710	5 1.129	1.307	1.420	1.681	2.035	2.390	2.928	3.475	4.221	5.128	6.170	7.212	8.000	8.348	8.313	8.032	7.523	6.741	5.735	4.677	3.731	2.963	2.369	1.915
-0. 0.403 0.529 1.025 1.025 1.215 1.333 1.600 1.950 2.287 2.767 3.215 3.757 4.311 4.811 5.179 5.80 5.998 7.919 11.059 16.729 22.131 14.440 8.366 5.405 3.788 2.805 2.160 1.99 0.399 0.524 1.018 1.208 1.326 1.593 1.943 2.282 2.768 3.227 3.789 4.373 4.914 5.324 5.564 6.249 8.395 12.369 23.551 NaN 20.195 9.234 5.618 3.848 2.819 2.158 1.80 0.427 0.567 1.029 1.215 1.331 1.596 1.948 2.293 2.799 3.290 3.918 4.614 5.325 5.972 6.565 7.435 9.076 11.989 17.466 22.522 14.443 8.274 5.306 3.702 2.734 2.102 1.016 1.	-22 0.4	495 0.648	3 1.085	1.269	1.384	1.648	2.000	2.347	2.856	3.352	3.989	4.701	5.443	6.139	6.744	7.308	7.903	8.460	8.711	8.255	7.032	5.545	4.251	3.266	2.548	2.024
1-19 0.399 0.524 1.018 1.208 1.326 1.593 1.943 2.282 2.768 3.227 3.789 4.373 4.914 5.324 5.564 6.249 8.395 12.369 23.551 NaN 20.195 9.234 5.618 3.848 2.819 2.158 1.806 1.979 1.251 1.331 1.345 1.606 1.959 2.313 2.847 3.389 4.127 5.024 6.059 7.123 8.057 8.849 9.717 10.861 12.047 11.863 9.403 6.630 4.669 3.401 2.568 1.999 1.902 1.251 1.331 1.346 1.060 1.959 2.313 2.847 3.389 4.127 5.024 6.059 7.123 8.057 8.849 9.717 10.861 12.047 11.863 9.403 6.630 4.669 3.401 2.568 1.999 1.058 1.079 1.252 1.362 1.017 1.018	-21 0.4	438 0.582	2 1.049	1.237	1.354	1.620	1.970	2.310	2.798	3.259	3.827	4.424	4.996	5.486	5.927	6.600	7.794	9.452	11.194	11.548	9.445	6.799	4.852	3.564	2.704	2.111
18 0.427 0.567 1.029 1.215 1.331 1.596 1.948 2.293 2.799 3.290 3.918 4.614 5.325 5.972 6.565 7.435 9.076 11.989 17.466 2.252 14.443 8.274 5.306 3.702 2.734 2.102 1.705 0.571 0.475 0.624 1.051 1.231 1.345 1.606 1.959 2.313 2.847 3.389 4.127 5.024 6.059 7.123 8.057 8.849 9.717 10.861 12.047 11.863 9.403 6.630 4.669 3.401 2.568 1.999 1.525 1.323 1.345 1.606 1.959 2.329 2.892 3.493 4.371 5.565 7.163 9.059 10.563 10.918 10.528 10.043 9.404 8.437 6.904 5.304 3.999 3.041 2.357 1.866 1.588 1.058	-20 0.4	403 0.529	1.025	1.215	1.333	1.600	1.950	2.287	2.767	3.215	3.757	4.311	4.811	5.179	5.380	5.998	7.919	11.059	16.729	22.131	14.440	8.366	5.405	3.788	2.805	2.160
-17 0.475 0.624 1.051 1.231 1.345 1.606 1.959 2.313 2.847 3.889 4.127 5.024 6.059 7.123 8.057 8.849 9.717 10.861 12.047 11.863 9.403 6.630 4.669 3.401 2.568 1.999 1.053 1.0681 1.079 1.252 1.362 1.362 1.362 1.362 1.362 1.362 2.892 2.892 3.493 4.371 5.565 7.163 9.059 10.563 10.918 10.528 10.043 9.464 8.437 6.904 5.304 3.999 3.041 2.357 1.866 1.588 1.589	-19 0	399 0.52	1.018	1.208	1.326	1.593	1.943	2.282	2.768	3.227	3.789	4.373	4.914	5.324	5.564	6.249	8.395	12.369	23.551	NaN	20.195	9.234	5.618	3.848	2.819	2.158
1.6	-18 0.4	427 0.56	7 1.029	1.215	1.331	1.596	1.948	2.293	2.799	3.290	3.918	4.614	5.325	5.972	6.565	7.435	9.076	11.989	17.466	22.522	14.443	8.274	5.306	3.702	2.734	2.102
-15	-17 0.4	475 0.624	1.051	1.231	1.345	1.606	1.959	2.313	2.847	3.389	4.127	5.024	6.059	7.123	8.057	8.849	9.717	10.861	12.047	11.863	9.403	6.630	4.669	3.401	2.568	1.999
-14 0.639 0.779 1.127 1.281 1.380 1.616 1.947 2.298 2.872 3.528 4.601 6.378 9.851 19.083 45.063 21.399 12.349 8.852 6.935 5.605 4.546 3.666 2.945 2.370 1.920 1.571 1.381 0.684 0.816 1.137 1.281 1.373 1.592 1.902 2.229 2.766 3.381 4.385 6.045 9.278 17.820 41.573 19.410 10.963 7.680 5.900 4.719 3.832 3.126 2.554 2.093 1.724 1.431 1.004 1.005	-16 0.:	531 0.68	1 1.079	1.252	1.362	1.617	1.969	2.329	2.892	3.493	4.371	5.565	7.163	9.059	10.563	10.918	10.528	10.043	9.464	8.437	6.904	5.304	3.999	3.041	2.357	1.866
-13	-15 0.:	587 0.733	3 1.106	1.270	1.375	1.623	1.968	2.329	2.909	3.556	4.568	6.113	8.631	12.671	16.296	14.712	11.642	9.517	8.018	6.725	5.488	4.360	3.420	2.688	2.134	1.719
-12 0.720 0.842 1.136 1.267 1.351 1.551 1.830 2.123 2.596 3.124 3.950 5.203 7.216 10.340 12.832 11.003 8.142 6.178 4.879 3.954 3.248 2.685 2.227 1.853 1.549 1.301 1.0745 0.857 1.123 1.240 1.315 1.492 1.736 1.988 2.383 2.805 3.421 4.250 5.326 6.497 7.165 6.790 5.799 4.792 3.959 3.294 2.756 2.316 1.950 1.647 1.395 1.186 1.001 0.761 0.861 1.098 1.201 1.267 1.419 1.627 1.836 2.152 2.472 2.908 3.430 4.009 4.527 4.789 4.666 4.248 3.719 3.202 2.742 2.345 2.005 1.715 1.468 1.260 1.084 1.001 0.001 0.001 0.001 0.001 1.152 1.208 1.337 1.510 1.678 1.924 2.161 2.462 2.792 3.119 3.381 3.505 3.449 3.238 2.939 2.613 2.296 2.004 1.744 1.515 1.315 1.142 0.994 1.001 0.00	-14 0.0	639 0.779	1.127	1.281	1.380	1.616	1.947	2.298	2.872	3.528	4.601	6.378	9.851	19.083	45.063	21.399	12.349	8.852	6.935	5.605	4.546	3.666	2.945	2.370	1.920	1.571
-11 0.745 0.857 1.123 1.240 1.315 1.492 1.736 1.988 2.383 2.805 3.421 4.250 5.326 6.497 7.165 6.790 5.799 4.792 3.959 3.294 2.756 2.316 1.950 1.647 1.395 1.186 1.00 0.761 0.861 1.098 1.201 1.267 1.419 1.627 1.836 2.152 2.472 2.908 3.430 4.009 4.527 4.789 4.666 4.248 3.719 3.202 2.742 2.345 2.005 1.715 1.468 1.260 1.084 1.00 0.766 0.855 1.063 1.152 1.208 1.337 1.510 1.678 1.924 2.161 2.462 2.792 3.119 3.381 3.505 3.449 3.238 2.939 2.613 2.296 2.004 1.744 1.515 1.315 1.142 0.994 1.00 0.905 1.143 1.250 1.390 1.524 1.711 1.884 2.093 2.306 2.501 2.648 2.713 2.680 2.559 2.376 2.162 1.940 1.726 1.527 1.345 1.184 1.041 0.915 1.00 0.915	-13 0.0	684 0.816	5 1.137	1.281	1.373	1.592	1.902	2.229	2.766	3.381	4.385	6.045	9.278	17.820	41.573	19.410	10.963	7.680	5.900	4.719	3.832	3.126	2.554	2.093	1.724	1.431
-10 0.761 0.861 1.098 1.201 1.267 1.419 1.627 1.836 2.152 2.472 2.908 3.430 4.009 4.527 4.789 4.666 4.248 3.719 3.202 2.742 2.345 2.005 1.715 1.468 1.260 1.084	-12 0.	720 0.842	2 1.136	1.267	1.351	1.551	1.830	2.123	2.596	3.124	3.950	5.203	7.216	10.340	12.832	11.003	8.142	6.178	4.879	3.954	3.248	2.685	2.227	1.853	1.549	1.301
-9 0.766 0.855 1.063 1.152 1.208 1.337 1.510 1.678 1.924 2.161 2.462 2.792 3.119 3.381 3.505 3.449 3.238 2.939 2.613 2.296 2.004 1.744 1.515 1.315 1.142 0.994 -8 0.763 0.841 1.020 1.095 1.143 1.250 1.390 1.524 1.711 1.884 2.093 2.306 2.501 2.648 2.713 2.680 2.559 2.376 2.162 1.940 1.726 1.527 1.345 1.184 1.041 0.915 -7 0.751 0.818 0.970 1.034 1.073 1.162 1.244 1.352 1.445 1.549 1.647 1.728 1.785 1.807 1.791 1.739 1.657 1.553 1.437 1.197 1.082 0.974 0.875 0.786 -5 0.709 0.757 0.861 0.994 0.930 0.987	-11 0.	745 0.85	7 1.123	1.240	1.315	1.492	1.736	1.988	2.383	2.805	3.421	4.250	5.326	6.497	7.165	6.790	5.799	4.792	3.959	3.294	2.756	2.316	1.950	1.647	1.395	1.186
-8	-10 0.	761 0.86	1 1.098	1.201	1.267	1.419	1.627	1.836	2.152	2.472	2.908	3.430	4.009	4.527	4.789	4.666	4.248	3.719	3.202	2.742	2.345	2.005	1.715	1.468	1.260	1.084
-7 0.751 0.818 0.970 1.034 1.073 1.161 1.273 1.378 1.521 1.647 1.793 1.934 2.058 2.146 2.183 2.161 2.084 1.964 1.818 1.660 1.500 1.346 1.202 1.071 0.952 0.846 -6 0.733 0.790 0.917 0.969 1.001 1.073 1.162 1.244 1.352 1.445 1.549 1.647 1.728 1.785 1.807 1.791 1.739 1.657 1.553 1.437 1.317 1.197 1.082 0.974 0.875 0.786 -5 0.709 0.757 0.861 0.904 0.930 0.987 1.058 1.122 1.205 1.275 1.351 1.420 1.477 1.515 1.530 1.518 1.482 1.423 1.347 1.260 1.167 1.073 0.980 0.891 0.808 0.732 -4 0.682 0.720 0.805 0.839 0.860 0.906 0.962 1.012 1.076 1.130 1.187 1.238 1.280 1.308 1.319 1.311 1.285 1.241 1.185 1.118 1.046 0.970 0.894 0.821 0.751 0.685 -3 0.652 0.681 0.748 0.776 0.792 0.829 0.874 0.913 0.964 1.006 1.050 1.090 1.123 1.145 1.154 1.149 1.130 1.098 1.055 1.004 0.946 0.885 0.822 0.760 0.700 0.643 -2 0.620 0.642 0.693 0.714 0.727 0.756 0.792 0.824 0.865 0.899 0.935 0.968 0.995 1.014 1.023 1.021 1.008 0.984 0.951 0.910 0.864 0.813 0.761 0.709 0.657 0.607	-9 0.	766 0.853	5 1.063	1.152	1.208	1.337	1.510	1.678	1.924	2.161	2.462	2.792	3.119	3.381	3.505	3.449	3.238	2.939	2.613	2.296	2.004	1.744	1.515	1.315	1.142	0.994
-6 0.733 0.790 0.917 0.969 1.001 1.073 1.162 1.244 1.352 1.445 1.549 1.647 1.728 1.785 1.807 1.791 1.739 1.657 1.553 1.437 1.317 1.197 1.082 0.974 0.875 0.786 -5 0.709 0.757 0.861 0.904 0.930 0.987 1.058 1.122 1.205 1.275 1.351 1.420 1.477 1.515 1.530 1.518 1.482 1.423 1.347 1.260 1.167 1.073 0.980 0.891 0.808 0.732 -4 0.682 0.720 0.805 0.839 0.860 0.996 1.012 1.076 1.130 1.187 1.238 1.280 1.308 1.311 1.285 1.241 1.185 1.118 1.046 0.970 0.894 0.821 0.751 0.685 -3 0.652 0.681 0.748 0.776 0.792 0.824 0.865 0.899 0.935 0.968 0.995 1.014 1.023 1.021	-8 0.	763 0.84	1 1.020	1.095	1.143	1.250	1.390	1.524	1.711	1.884	2.093	2.306	2.501	2.648	2.713	2.680	2.559	2.376	2.162	1.940	1.726	1.527	1.345	1.184	1.041	0.915
-5 0.709 0.757 0.861 0.904 0.930 0.987 1.058 1.122 1.205 1.275 1.351 1.420 1.477 1.515 1.530 1.518 1.482 1.423 1.347 1.260 1.167 1.073 0.980 0.891 0.808 0.732 -4 0.682 0.720 0.805 0.839 0.860 0.906 0.962 1.012 1.076 1.130 1.187 1.238 1.280 1.308 1.319 1.311 1.285 1.241 1.185 1.118 1.046 0.970 0.894 0.821 0.751 0.685 -3 0.652 0.681 0.748 0.776 0.792 0.829 0.874 0.913 0.964 1.006 1.050 1.090 1.123 1.145 1.145 1.149 1.130 1.098 1.055 1.004 0.946 0.885 0.822 0.760 0.700 0.643 -2 0.620 0.642 0.693 0.714 0.727 0.756 0.792 0.824 0.865 0.899 0.935 0.968 0.995 1.014 1.023 1.021 1.008 0.984 0.951 0.910 0.864 0.813 0.761 0.709 0.657 0.607 -4 0.682 0.760	-7 0.	751 0.818	0.970	1.034	1.073	1.161	1.273	1.378	1.521	1.647	1.793	1.934	2.058	2.146	2.183	2.161	2.084	1.964	1.818	1.660	1.500	1.346	1.202	1.071	0.952	0.846
-4 0.682 0.720 0.805 0.839 0.860 0.906 0.962 1.012 1.076 1.130 1.187 1.238 1.280 1.308 1.311 1.285 1.241 1.185 1.118 1.046 0.970 0.894 0.821 0.751 0.685 -3 0.652 0.681 0.748 0.776 0.792 0.829 0.874 0.913 0.964 1.050 1.090 1.123 1.145 1.154 1.149 1.130 1.098 1.055 1.004 0.946 0.885 0.822 0.760 0.700 0.643 -2 0.620 0.642 0.693 0.714 0.727 0.756 0.792 0.824 0.865 0.899 0.935 0.968 0.995 1.014 1.023 1.021 1.008 0.984 0.951 0.910 0.864 0.813 0.761 0.709 0.657 0.607	-6 0.	733 0.790	0.917	0.969	1.001	1.073	1.162	1.244	1.352	1.445	1.549	1.647	1.728	1.785	1.807	1.791	1.739	1.657	1.553	1.437	1.317	1.197	1.082	0.974	0.875	0.786
-3 0.652 0.681 0.748 0.776 0.792 0.829 0.874 0.913 0.964 1.090 1.123 1.145 1.154 1.149 1.130 1.098 1.055 1.004 0.946 0.885 0.822 0.760 0.700 0.643 -2 0.620 0.642 0.693 0.714 0.727 0.756 0.792 0.824 0.865 0.899 0.935 0.968 0.995 1.014 1.023 1.021 1.008 0.984 0.951 0.910 0.864 0.813 0.761 0.709 0.657 0.607	-5 0.	709 0.75	0.861	0.904	0.930	0.987	1.058	1.122	1.205	1.275	1.351	1.420	1.477	1.515	1.530	1.518	1.482	1.423	1.347	1.260	1.167	1.073	0.980	0.891	0.808	0.732
-2 0.620 0.642 0.693 0.714 0.727 0.756 0.792 0.824 0.865 0.899 0.935 0.968 0.995 1.014 1.023 1.021 1.008 0.984 0.951 0.910 0.864 0.813 0.761 0.709 0.657 0.607	-4 0.0	682 0.720	0.805	0.839	0.860	0.906	0.962	1.012	1.076	1.130	1.187	1.238	1.280	1.308	1.319	1.311	1.285	1.241	1.185	1.118	1.046	0.970	0.894	0.821	0.751	0.685
	-3 0.0	652 0.68	0.748	0.776	0.792	0.829	0.874	0.913	0.964	1.006	1.050	1.090	1.123	1.145	1.154	1.149	1.130	1.098	1.055	1.004	0.946	0.885	0.822	0.760	0.700	0.643
$-1 0.587 \\ 0.602 \\ 0.639 \\ 0.655 \\ 0.665 \\ 0.688 \\ 0.717 \\ 0.744 \\ 0.778 \\ 0.807 \\ 0.838 \\ 0.806 \\ 0.890 \\ 0.908 \\ 0.917 \\ 0.918 \\ 0.917 \\ 0.918 \\ 0.910 \\ 0.892 \\ 0.866 \\ 0.834 \\ 0.796 \\ 0.754 \\ 0.710 \\ 0.664 \\ 0.619 \\ 0.575 \\ 0.575 \\ 0.575 \\ 0.587 \\ 0.898 \\ 0.898 \\ 0.898 \\ 0.898 \\ 0.898 \\ 0.917 \\ 0.918 \\ 0.918 \\ 0.918 \\ 0.918 \\ 0.918 \\ 0.892 \\ 0.896 \\ 0.892 \\ 0.896 \\ 0.894 \\ 0.796 \\ 0.754 \\ 0.710 \\ 0.664 \\ 0.619 \\ 0.575 \\ 0.898 \\$	-2 0.0	620 0.642	0.693	0.714	0.727	0.756	0.792	0.824	0.865	0.899	0.935	0.968	0.995	1.014	1.023	1.021	1.008	0.984	0.951	0.910	0.864	0.813	0.761	0.709	0.657	0.607
	-1 0.:	587 0.602	0.639	0.655	0.665	0.688	0.717	0.744	0.778	0.807	0.838	0.866	0.890	0.908	0.917	0.918	0.910	0.892	0.866	0.834	0.796	0.754	0.710	0.664	0.619	0.575

	0.55	- 0.560	0.506	0.500	0.000	0.624	0.640	0.670	0.700	0.705	0.754	0.700	0.002	0.020	0.021	0.024	0.020	0.017	0.700	0.771	0.740	0.705 0.667	0.627	0.507 0.4	- 40
0		_																				0.705 0.667			-
1		3 0.524	_							0.654					0.760				0.742			0.664 0.630			\rightarrow
2		1 0.487								0.590	0.617	0.644	0.668	0.688	0.703	0.711	0.713	0.708	0.696	0.679	0.657	0.630 0.601	0.569	0.537 0.5	504
3	0.467	7 0.453	0.439	0.440	0.442	0.450	0.465	0.482	0.508	0.533	0.561	0.590	0.616	0.638	0.656	0.667	0.671	0.669	0.661	0.646	0.627	0.603 0.576	0.548	0.518 0.4	187
4	0.444	1 0.421	0.394	0.390	0.390	0.395	0.409	0.426	0.454	0.481	0.512	0.544	0.573	0.598	0.618	0.632	0.639	0.639	0.633	0.621	0.603	0.582 0.557	0.530	0.502 0.4	173
5	0.424	1 0.393	0.349	0.341	0.339	0.341	0.354	0.373	0.404	0.434	0.469	0.505	0.538	0.567	0.590	0.606	0.616	0.618	0.613	0.602	0.586	0.566 0.543	0.517	0.490 0.4	162
6	0.408	0.368	0.306	0.293	0.288	0.287	0.299	0.321	0.357	0.392	0.433	0.474	0.512	0.544	0.570	0.589	0.600	0.604	0.600	0.591	0.575	0.556 0.533	0.507	0.480 0.4	153
7	0.398	0.349	0.265	0.245	0.236	0.231	0.244	0.270	0.314	0.356	0.404	0.451	0.494	0.531	0.560	0.581	0.593	0.598	0.595	0.585	0.570	0.550 0.527	0.501	0.474 0.4	147
8	0.394	1 0.336	0.228	0.197	0.184	0.171	0.187	0.221	0.277	0.327	0.384	0.438	0.487	0.527	0.559	0.582	0.596	0.600	0.597	0.586	0.570	0.549 0.525	0.498	0.471 0.4	142
9	0.396	6 0.331	0.199	0.155	0.133	0.107	0.130	0.178	0.250	0.311	0.377	0.438	0.491	0.536	0.570	0.594	0.607	0.611	0.606	0.594	0.576	0.553 0.527	0.499	0.470 0.4	140
10	0.406	6 0.337	0.187	0.130	0.097	0.037	0.085	0.154	0.242	0.312	0.386	0.453	0.511	0.558	0.594	0.618	0.630	0.632	0.625	0.609	0.588	0.562 0.533	0.503	0.471 0.4	140
11	0.425	0.355	0.201	0.143	0.109	0.054	0.094	0.168	0.262	0.338	0.417	0.488	0.549	0.598	0.634	0.657	0.666	0.664	0.652	0.632	0.606	0.576 0.543	0.509	0.475 0.4	142
12	0.452	2 0.387	0.246	0.198	0.173	0.145	0.171	0.230	0.318	0.394	0.475	0.548	0.610	0.659	0.694	0.713	0.718	0.709	0.691	0.664	0.631	0.595 0.557	0.519	0.481 0.4	145
13	0.489	0.435	0.320	0.285	0.270	0.257	0.283	0.332	0.413	0.486	0.566	0.639	0.700	0.747	0.778	0.791	0.788	0.770	0.742	0.705	0.663	0.619 0.575	0.531	0.489 0.4	150
14	0.536	6 0.499	0.422	0.402	0.395	0.396	0.427	0.474	0.550	0.620	0.697	0.768	0.827	0.870	0.894	0.898	0.882	0.851	0.808	0.757	0.704	0.649 0.596	0.545	0.498 0.4	155
15	0.593	3 0.578	0.552	0.551	0.554	0.571	0.612	0.662	0.737	0.804	0.879	0.947	1.003	1.040	1.054	1.043	1.009	0.956	0.892	0.822	0.752	0.684 0.620	0.562	0.508 0.4	161
16	0.656	0.672	0.715	0.739	0.756	0.797	0.857	0.915	0.991	1.056	1.126	1.192	1.246	1.277	1.277	1.243	1.178	1.093	0.997	0.900	0.808	0.723 0.646	0.579	0.519 0.4	166
17	0.725	0.779	0.919	0.981	1.019	1.102	1.194	1.265	1.342	1.398	1.461	1.527	1.585	1.614	1.597	1.525	1.410	1.272	1.128	0.992	0.871	0.765 0.673	0.595	0.528 0.4	171
18	0.795	0.895	1.170	1.296	1.372	1.530	1.685	1.775	1.838	1.867	1.910	1.984	2.069	2.116	2.078	1.942	1.736	1.505	1.287	1.097	0.938	0.807 0.699	0.610	0.536 0.4	174
19	0.861	1 1.011	1.475	1.710	1.860	2.177	2.463	2.579	2.578	2.518	2.492	2.610	2.796	2.916	2.865	2.599	2.205	1.809	1.474	1.210	1.005	0.846 0.721	0.621	0.540 0.4	174
20	0.916	5 1.118	1.826	2.249	2.548	3.245	3.874	3.996	3.785	3.495	3.193	3.529	3.973	4.330	4.338	3.748	2.900	2.186	1.674	1.317	1.063	0.877 0.736	0.627	0.541 0.4	171
21		1 1.200							5.915	5.472	5.109	5.423	5.994	7.058	7.894	6.105	3.887	2.589	1.851	1.398	1.100	0.892 0.740	0.625	0.536 0.4	164
22	0.970	1.243	2.420	3.416	4.375	8.868	22.666	12.396	8.986	9.738	11.880	9.560	8.700	11.393	26.218	11.248	4.835	2.853	1.939	1.428	1.106	0.888 0.731	0.614	0.524 0.4	153
23	0.960	1.238	2.434	3.446	4.422	9.005	23.246	12.970	10.136	13.964	NaN	13.661	9.513	11.157	18.726	10.024	4.645	2.771	1.886	1.388	1.074	0.861 0.708	0.595	0.507 0.4	138
24	0.925	5 1.186	2.216	2.964	3.583	5.464	7.625	7.613	7.454	8.821				7.055		5.416		2.385	1.706	1.285	1.008	0.814 0.673	0.567	0.484 0.4	119
25	0.86	7 1.095	1.882	2.351	2.682	3.466	4.228	4.493	4.561	4.628	4.691	4.634	4.472	4.330	4.015		2.568	1.926	1.466	1.145	0.918	0.752 0.628	0.532	0.457 0.3	397
26	0.794	1 0.981	1.544	1.823	2.001	2.377	2.724	2.876	2.884	2.752		2.795	2.876	2.816	2.617	2.285	1.892	1.526	1.227	0.995	0.818	0.682 0.577	0.494	0.427 0.3	373
27		0.858				1.719		1.987	1.999	1.946	1.902	1.959	1.996	1.958	1.839	1.654		1.214	1.017			0.611 0.524			347
28	0.622	2 0.735	_					1.454	1.479	1.474	1.468	1.475	1.474		1.361	1.248			0.844	0.727		0.542 0.471			
29	-	5 0.621			-			1.105	1.133	1.142	1.144		<u> </u>	1.098		0.972	0.885	0.793	0.703	0.619		0.478 0.422	-		295
30		3 0.519					0.830	0.861	0.886		0.902	0.899	0.886	0.862	0.824		0.716	0.653	0.590			0.421 0.376			271
31		0.429			-		0.658	0.682	0.704	0.715	0.720	0.718	0.709	0.691		0.629	0.710	0.544	0.498		-	0.371 0.335			248
32		0.352	1			-	0.529	0.549	0.567		0.582	0.582	0.575	0.562	0.543		0.490				-	0.327 0.298			
33		3 0.287							0.461	0.470		0.362		0.362		0.433			-			0.289 0.266			206
34		3 0.233						0.366	0.380	0.388	0.393	0.395	0.393			0.366	-					0.256 0.238			
35	0.203		0.235					0.304	0.316	0.323	0.329	0.331	0.330		0.378		0.300		0.273	0.259		0.238 0.238			172
40	0.10		0.233				0.292		0.310	0.323	0.329		0.330	0.327		0.312			0.273	0.239	-	0.134 0.129			-
50		2 0.045			-				0.143	0.130	0.134			0.160	0.160	0.138	0.130		0.149	0.143	-	0.134 0.129			
										0.062												0.062 0.060			
70		7 0.029								0.029	0.029	0.029	0.028	0.028	0.028	0.028	0.028	0.028	0.027	0.02/	0.02/	0.02/ 0.026	0.020	0.020 0.0	140

备注: X 为距线路中心的距离, Y 为距离地面的高度。

表 3-23 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)工频磁感应强度空间分布(µT)

					ANI X					OIX / /2	· · ·	<u> </u>							(μ1)			
XX	1.5	4.5	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
-70	0.700	0.721	0.737	0.744	0.748	0.751	0.754	0.756	0.757	0.758	0.759	0.758	0.757	0.755	0.753	0.750	0.747	0.742	0.738	0.732	0.726	0.720
-50	1.653	1.792	1.929	1.986	2.024	2.062	2.090	2.121	2.141	2.160	2.174	2.182	2.185	2.182	2.173	2.159	2.139	2.114	2.085	2.050	2.012	1.970
-40	2.798	3.253	3.791	4.049	4.236	4.440	4.602	4.790	4.931	5.069	5.182	5.266	5.317	5.331	5.308	5.249	5.155	5.030	4.879	4.708	4.521	4.324
-30	4.536	5.874	7.984	9.324	10.498	12.062	13.613	15.934	18.272	21.426	25.189	29.319	32.982	34.757	33.762	30.685	26.888	23.248	20.066	17.369	15.096	13.172
-29	4.703	6.147	8.477	9.993	11.344	13.185	15.059	17.977	21.074	25.577	31.593	39.346	47.679	52.213	49.144	41.737	34.382	28.429	23.793	20.144	17.213	14.813
-28	4.859	6.404	8.944	10.628	12.150	14.259	16.453	19.975	23.889	29.986	39.185	53.868	76.426	93.791	79.469	58.127	43.706	34.369	27.930	23.191	19.524	16.591
-27	5.001	6.639	9.371	11.205	12.879	15.220	17.686	21.719	26.323	33.821	46.157	70.048	132.742	304.678	139.578	77.260	53.134	40.325	32.187	26.403	21.995	18.495
-26	5.126	6.847	9.745	11.704	13.497	16.012	18.666	23.013	27.981	36.081	49.428	75.331	143.484	331.443	153.029	85.453	59.276	45.290	36.267	29.717	24.625	20.534
-25	5.233	7.023	10.056	12.109	13.985	16.603	19.344	23.767	28.700	36.416	48.124	66.985	96.478	120.689	104.743	78.763	60.879	48.929	40.183	33.241	27.512	22.761
-24	5.319	7.164	10.299	12.415	14.338	16.994	19.731	24.033	28.638	35.385	44.512	56.547	70.191	79.337	77.860	69.564	60.400	52.115	44.520	37.402	30.908	25.289
-23	5.382	7.267	10.471	12.623	14.563	17.210	19.886	23.963	28.127	33.825	40.762	48.688	56.487	62.118	64.166	63.267	60.663	56.580	50.642	43.139	35.296	28.288
-22	5.422	7.329	10.573	12.740	14.679	17.292	19.887	23.728	27.491	32.344	37.778	43.403	48.569	52.774	56.312	59.933	63.447	64.954	61.449	52.402	41.451	31.915
-21	5.436	7.352	10.608	12.775	14.703	17.280	19.807	23.472	26.956	31.266	35.809	40.152	43.806	46.811	50.873	58.562	70.076	82.545	85.074	69.683	50.316	36.067
-20	5.426	7.332	10.577	12.735	14.651	17.204	19.696	23.283	26.653	30.749	34.942		41.535	42.999	45.829	58.309	80.765	121.909	161.375	105.524	61.346	39.801
-19	5.390	7.272	10.482	12.622	14.528	17.077	19.575	23.196	26.630	30.856	35.251	39.302	42.295	43.678	46.006	60.742	89.332	170.134	NaN	146.507	67.211	41.056
-18	5.329	7.171	10.322	12.437	14.332	16.889	19.429	23.187	26.857	31.564	36.768	42.010	46.571	50.191	55.092	65.865	86.441	125.802	162.399	104.379	59.965	38.584
-17	5.243	7.030	10.098	12.173	14.050	16.615	19.214	23.173	27.214	32.730	39.418	47.035	54.626	60.790	65.501	70.849	78.577	86.931	85.612	67.953	48.018	33.902
-16	5.134	6.851	9.808	11.825	13.666	16.220	18.861	23.019		34.022	42.903	54.721	68.508	78.962	80.632	76.985	72.985	68.595	61.132	50.069	38.533	29.103
-15	5.004	6.635	9.452	11.386	13.167	15.667	18.297	22.559	27.333	34.831	46.279		94.659						49.017	40.050	31.868	25.045
-14	4.853	6.386	9.034	10.858	12.546	14.933	17.470	21.650	26.457	34.338	47.414	72.997	140.965	331.890	157.190	90.539	64.852	50.832	41.147	33.443	27.034	21.771
-13	4.684	6.107	8.559	10.249	11.811	14.021	16.372	20.248	24.707	32.018	44.134	67.769	130.256	304.147	142.167	80.429	56.460	43.496	34.903	28.447	23.291	19.102
-12	4.500	5.803	8.039	9.572	10.983	12.966	15.055	18.445	22.249	28.227	37.323	51.980	74.818	93.275	80.357	59.746	45.560	36.166	29.466	24.335	20.226	16.870
-11	4.303	5.480	7.485	8.849	10.094	11.821	13.609	16.431	19.466	23.927	29.962	37.854	46.559	51.762	49.443	42.557	35.437	29.498	24.723	20.842	17.636	14.963
-10	4.097	5.142	6.912	8.103	9.179	10.647	12.134	14.403	16.727	19.913	23.781	28.126	32.145	34.396	33.885	31.173	27.572	23.975	20.723	17.882	15.427	13.317
-9	3.884	4.796	6.332	7.357	8.271	9.499	10.713	12.505	14.257	16.516	19.041	21.614	23.799	25.036	24.982	23.766	21.841	19.646	17.457	15.407	13.548	11.891
-8	3.667	4.446	5.757	6.628	7.397	8.414	9.399	10.810	12.135	13.765	15.485	17.137	18.487	19.284	19.374	18.788	17.700	16.326	14.842	13.364	11.959	10.662
-7	3.450	4.097	5.197	5.929	6.573	7.414	8.216	9.336	10.358	11.572	12.804	13.950	14.876	15.451	15.595	15.310	14.671	13.787	12.764	11.690	10.625	9.606
-6	3.234	3.753	4.657	5.269	5.808	6.509	7.169	8.076	8.885	9.825	10.756	11.609	12.300	12.754	12.922	12.797	12.415	11.832	11.115	10.325	9.509	8.703
-5	3.023	3.418	4.141	4.651	5.106	5.697	6.251	7.005	7.668	8.426	9.169	9.844	10.398	10.781	10.962	10.930	10.703		9.802	9.212	8.580	7.936
-4	2.820	3.092	3.650	4.076	4.464	4.974	5.452	6.097	6.661	7.300	7.922	8.487	8.958	9.299	9.487	9.513	9.385	9.122	8.752	8.304	7.807	7.286
-3	2.627	2.780	3.184	3.542	3.880	4.332	4.757	5.330	5.828	6.389	6.933	7.429	7.848	8.163	8.357	8.421	8.359	8.182	7.910	7.564	7.166	6.738
-2	2.447	2.484	2.741	3.045	3.350	3.764	4.156	4.683	5.138	5.650	6.144	6.597	6.984	7.283	7.482	7.571	7.554	7.436	7.233	6.960	6.637	6.278
-1	2.284	2.207	2.318	2.583	2.870	3.266	3.640	4.141	4.571	5.053	5.517	5.942	6.309	6.599	6.801	6.909	6.922	6.845	6.691	6.471	6.201	5.895
0	2.142	1.955	1.911	2.156	2.442	2.836	3.204	3.694	4.111	4.576	5.023	5.432	5.786	6.071	6.276	6.395	6.429	6.381	6.261	6.079	5.847	5.579
-	2.025	1.738	1.517	1.774	2.074	2.476	2.847	3.335	3.748	4.205	4.643	5.043	5.390	5.671	5.878	6.004	6.051	6.022	5.924	5.768	5.564	5.323
2	1.936	1.572	1.139	1.469	1.783	2.193	2.570	3.062	3.476	3.932	4.365	4.761	5.103	5.382	5.588	5.718	5.772	5.753	5.670	5.529	5.343	5.120
	1.881	1.466	1.048	1.281	1.581	1.992	2.374	2.874	3.293	3.750	4.183	4.576	4.915	5.190	5.394	5.524	5.579	5.565	5.488	5.355	5.178	4.965
4	1.860	1.423	1.019	1.182	1.460	1.873	2.264	2.774	3.198	3.660	4.094	4.485	4.820	5.090	5.289	5.414	5.466	5.450	5.372	5.240	5.064	4.855

5	1.877	1.438	1.003	1.127	1.408	1.838	2.243	2.766	3.198	3.663	4.098	4.486	4.817	5.080	5.270	5.386	5.429	5.404	5.318	5.180	4.999	4.785
6	1.933	1.514	1.014	1.106	1.435	1.902	2.324	2.860	3.298	3.767	4.200	4.584	4.906	5.159	5.336	5.437	5.465	5.425	5.324	5.172	4.979	4.755
7	2.027	1.656	1.133	1.197	1.598	2.092	2.525	3.069	3.510	3.978	4.408	4.784	5.095	5.332	5.491	5.572	5.577	5.514	5.390	5.217	5.004	4.763
8	2.162	1.869	1.497	1.619	1.958	2.436	2.865	3.407	3.846	4.311	4.734	5.099	5.393	5.609	5.742	5.794	5.768	5.673	5.518	5.314	5.074	4.808
9	2.336	2.154	1.995	2.179	2.483	2.934	3.352	3.888	4.324	4.782	5.195	5.543	5.815	6.003	6.102	6.114	6.046	5.907	5.710	5.466	5.188	4.889
10	2.548	2.507	2.574	2.826	3.137	3.582	3.997	4.531	4.963	5.414	5.813	6.141	6.383	6.532	6.585	6.546	6.422	6.226	5.972	5.674	5.349	5.007
11	2.797	2.926	3.237	3.576	3.923	4.391	4.818	5.361	5.795	6.241	6.624	6.925	7.129	7.227	7.219	7.109	6.911	6.638	6.310	5.944	5.557	5.162
12	3.081	3.411	4.002	4.457	4.869	5.391	5.852	6.421	6.865	7.309	7.676	7.944	8.097	8.128	8.037	7.834	7.534	7.160	6.735	6.280	5.815	5.353
13	3.395	3.962	4.898	5.511	6.023	6.638	7.157	7.776	8.242	8.690	9.038	9.266	9.354	9.295	9.092	8.759	8.322	7.811	7.257	6.688	6.123	5.580
14	3.738	4.584	5.959	6.794	7.457	8.215	8.827	9.524	10.025	10.483	10.814	10.992	10.997	10.818	10.459	9.945	9.316	8.618	7.892	7.173	6.484	5.840
15	4.103	5.279	7.233	8.391	9.280	10.254	11.004	11.812	12.361	12.835	13.148	13.273	13.176	12.834	12.255	11.480	10.575	9.613	8.654	7.739	6.894	6.129
16	4.483	6.047	8.782	10.424	11.662	12.969	13.917	14.865	15.460	15.948	16.253	16.337	16.128	15.570	14.667	13.497	12.180	10.838	9.558	8.388	7.349	6.440
17	4.867	6.880	10.684	13.082	14.890	16.726	17.952	19.033	19.628	20.097	20.426	20.539	20.256	19.419	18.017	16.210	14.246	12.339	10.612	9.112	7.836	6.760
18	5.242	7.758	13.032	16.670	19.483	22.225	23.826	24.896	25.282	25.607	26.066	26.464	26.304	25.141	22.900	19.973	16.926	14.153	11.806	9.884	8.329	7.069
19	5.591	8.641	15.895	21.674	26.466	30.977	33.037	33.508	33.000	32.732	33.684	35.158	35.807	34.397	30.542	25.376	20.388	16.274	13.087	10.656	8.790	7.340
20	5.893	9.463	19.226	28.801	38.119	46.900	49.149	47.089	43.913	41.280	44.230	48.726	52.274	51.574	43.854	33.357	24.690	18.564	14.328	11.339	9.166	7.542
21	6.128	10.136	22.620	38.520	60.062	84.017	81.374	70.172	63.859	56.621	63.359	70.964	83.588	92.935	71.137	44.699	29.323	20.617	15.300	11.814	9.395	7.640
22	6.278	10.566	25.066	48.125	100.567	262.205	143.993	103.061	108.898	129.994	107.009	100.142	132.918	306.579	130.868	55.710	32.447	21.723	15.722	11.961	9.419	7.607
23	6.333	10.689	25.383	48.764	102.092	267.995	149.672	115.039	154.687	NaN	151.427	108.436	129.551	218.902	116.944	53.770	31.705	21.281	15.405	11.712	9.214	7.434
24	6.291	10.494	23.485	40.034	62.647	88.824	88.780	85.522	98.556	122.525	97.057	81.587	82.561	83.074	63.693	41.388	27.533	19.422	14.402	11.093	8.794	7.129
25	6.159	10.033	20.463	30.636	40.604	50.364	53.756	54.054	53.408	52.015	53.209	52.738	51.677	48.028	39.927	30.340	22.483	16.877	12.974	10.215	8.213	6.720
26	5.952	9.391	17.349	23.566	28.674	33.459	35.634	35.906	34.361	32.138	34.318	35.310	34.547	31.966	27.691	22.694	18.069	14.307	11.411	9.213	7.537	6.244
27	5.687	8.655	14.608	18.542	21.475	24.175	25.546	26.008	25.608	25.164	25.398	25.480	24.724	22.990	20.440	17.488	14.591	12.035	9.913	8.201	6.833	5.738
28	5.385	7.896	12.336	14.930	16.757	18.436	19.368	19.889	19.923	19.809	19.684	19.376	18.646	17.410	15.747	13.846	11.922	10.138	8.574	7.249	6.146	5.232
29	5.062	7.159	10.489	12.264	13.472	14.586	15.244	15.699	15.824	15.784	15.596	15.222	14.589	13.673	12.516	11.212	9.872	8.589	7.420	6.392	5.504	4.748
30	4.733	6.470	8.990	10.242	11.075	11.846	12.316	12.670	12.788	12.760	12.579	12.239	11.722	11.028	10.187	9.251	8.280	7.331	6.443	5.637	4.923	4.298
40	2.247	2.514	2.756	2.841	2.888	2.924	2.941	2.944	2.933	2.904	2.860	2.800	2.726	2.640	2.543	2.437	2.324	2.206	2.086	1.965	1.844	1.726
50	1.182	1.234	1.269	1.277	1.279	1.278	1.275	1.267	1.257	1.244	1.227	1.208	1.186	1.161	1.134	1.105	1.074	1.041	1.007	0.973	0.937	0.902
70	0.475	0.478	0.477	0.476	0.474	0.472	0.470	0.467	0.464	0.460	0.456	0.452	0.448	0.443	0.437	0.432	0.426	0.420	0.414	0.407	0.401	0.394
夕外	*7 V	. HE AN H	# 	ᄮᄮᇚᅲᅑ	r 1/2	. मान करें । व	44 ~	- 124														

备注: X 为距线路中心的距离, Y 为距离地面的高度。

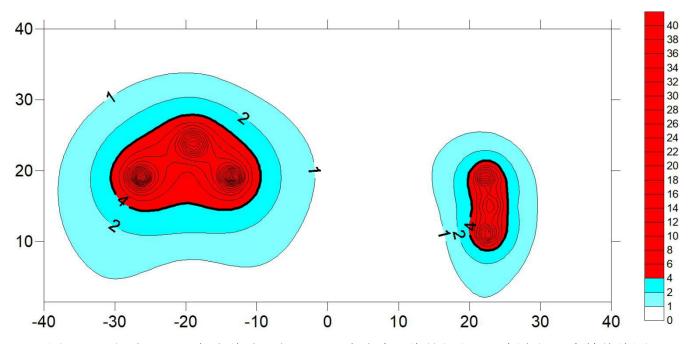


图 3-22 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)工频电场强度等值线图

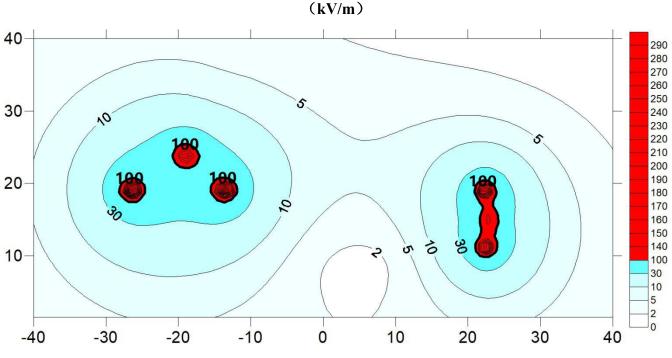


图 3-23 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)工频磁感应强度等值线图 (µT)

①工频电场空间分布分析

经预测, 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)在采用最不利塔型、下相线导线对地高度 11m 时,在距离地面(8~28)m 高度范围内,距离导线地面投影中心(-31~26)m 以内的部分区域超过 4000V/m 标准限值,其他区域均满足标准要求。因此,以

110DB21S-SJ1 为预测塔型,在不考虑风偏的情况下, 新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)需与沿线环境保护目标建筑的水平距离至少为 3m(26m-23m=3m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 3m(11m-8m=3m,取 3m)(满足二者条件之一即可)。

②工频磁场空间分布分析

经预测,新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)在采用最不利塔型、下相线导线对地高度 11m 时,在距离地面(9~26)m 高度范围内,距离导线地面投影中心(-28~25)m 范围内的部分区域超过 100μT 标准限值,其他区域均满足标准要求。因此,以110DB21S-SJ1 为预测塔型,在不考虑风偏的情况下,新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)需与沿线环境保护目标建筑的水平距离至少为 2m(25m-23m=2m)或本线路下相导线与沿线环境保护目标建筑的线下垂直距离至少为 2m(11m-9m=2m)(满足二者条件之一即可)。

③结论

综合上述分析,新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)在采用最不利塔型为预测塔型,在严格按照初步设计断面图的设计高度前提下(导线对地不低于 11m),在不考虑风偏的情况下,新建 110kV 架空线路(与 220kV 宏水牵 I 线并行段)需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 3m,或与下相导线线下垂直距离至少为 3m (满足二者条件之一即可)。

3.2.11 线路沿线典型环境保护目标预测分析

(1) 预测思路

本次评价对线路沿线电磁环境保护目标预测选择评价范围内距离线路最近的典型环境保护目标进行定量的电磁环境影响分析,预测思路如下:

- 1) 本次评价电磁环境保护目标预测采用线路贡献值叠加现状监测值的方式;
- 2) 预测塔型选取最不利塔基, 预测导线对地高度根据设计单位提供的初步设计平断面图确定:
- 3) 线路沿线 5 处电磁环境保护目标中重庆市博勇建筑工程有限公司项目部为本期拟建 220kV 宏水牵 I、II 线并行区电磁环境保护目标,本次预测考虑拟建线路并行影响,对重庆市博 勇建筑工程有限公司项目部进行电磁环境影响预测时,采用两条拟建线路贡献值叠加现状值,其中因拟建 220kV 宏水牵 II 线为跨越建筑,故 220kV 宏水牵 II 线贡献值从最不利角度选取边 导线内最大贡献值:

4)本次评价在重庆市博勇建筑工程有限公司项目部布设了3个监测点位,电磁环境影响叠加预测过程中从最不利角度选取较大测量值。2号电磁环境保护目标(南川工业园水江组团黄**家库房)及3号电磁环境保护目标(重庆众城再生资源综合利用有限公司门卫室)现状值从最不利角度利用重庆市博勇建筑工程有限公司项目部较大测量值。

(2) 预测参数

1) 预测塔型选择

本次评价对三角排列段电磁环境保护目标选用22N-DJ 塔进行预测,对垂直排列段电磁环境保护目标选用22GNC-J3塔进行预测。

2) 预测高度的选取

根据设计单位提供平断面图确定敏感点处预测导线高度,详见表3-24。

3) 电流的选取

本评价选取最不利情况下 JL3/G1A-400/35 型导线裸导线安全载流量 794A 进行预测。

(3) 预测结果

预测结果详见表3-24。

表 3-24 新建 220kV 单回架空线路环境保护目标电磁环境预测一览表

			V 宏水牵 位置关系	与 220kV 线相对位				预	贡献	 就值	现北	大值 ^①	预测	N值 [®]
编号	环境敏感 目标名称	方位及 最近距 离	设计导 线对地 最低高 度 ²	方位及最近距离	设计导 线对地 最低高 度 ^②	与其他并行线路 位置关系	最近一排房 屋结构及高 度	测 高 度 (m)	工频 电场 强度 V/m	工频 磁感 度 µT	工频 电场 强度 V/m	工频磁 感应强 度µT	工频 电场 强度 V/m	工频 磁感 应强 度 _μ T
1	重庆市博 勇建筑工 程有限公 司项目部	线路西 北侧最 近约 17m	约 25m (三角 排列)	线路跨越	约 26m (三角 排列)	500kV 张竹一线 东南侧约 30m, 500kV 张竹一线 跨越,110kV 南 中线北侧约 40m,110kV 大 宏线北侧约 56m	1 层坡顶房 屋,高约 4.5m	1.5	906	4.95	244.6	1.083	1151	6.03
2	南川工业 园水江组 团黄**家 库房	/	/	线路西北 侧最近约 13m	约 24m (三角 排列)	500kV 张竹一线 东南侧约 44m, 500kV 张竹二线 西北侧约 43m	1 层坡顶房 屋 1 栋, 1 人	1.5	563	2.76	244.6	1.083	808	3.84
3	重庆众城 再生资源 综合利用 有限公司 门卫室	/	/	线路西北 侧最近约 26m	约 26m (三角 排列)	500kV 张竹一线 东南侧约 28m, 500kV 张竹二线 西北侧约 52m	1 层平顶房 屋 1 栋(楼 顶不可到 达),1 人	1.5	382	1.48	244.6	1.083	627	2.56
4	重庆市盛 邦石粉有 限公司门 卫室	线路西 南侧最 近约 38m	约 26m (三角 排列)	/		110kV 大宏线东 南侧约 5m, 110kV 南中线东 南侧约 17m	1 层平顶房 屋 1 栋(楼 顶不可到 达),高约 3m	1.5	226	0.93	25.57	0.3145	252	1.24
5	中铁十八 局集团材 料库房		/	线路东南 侧最近约 25m	约 25m (垂直 排列)	无	1 层坡顶彩 钢棚,高约 6m	1.5	138	1.23	1.408	0.0168	140	1.25

备注:①重庆市博勇建筑工程有限公司项目部布设了3个监测点位,电磁环境影响叠加预测选取较大测量值。②敏感点处预测导线高度根据设计单位提供的初步设计平断面图确定;③工频电场强度预测值小数点进位取整,工频磁感应强度预测值保留两位小数。

根据以上预测结果,本项目建成投运后,线路沿线现有最近环境保护目标的工频电场强度预测值在(140~1151)V/m 之间、工频磁感应强度预测值在(1.24~6.03)μT 之间,均小于公众曝露控制限值4000V/m 与100μT 的标准要求。线路沿线规划电磁环境保护目标在满足本评提出的达标距离情况下,工频电场强度、工频磁感应强度能满足公众曝露控制限值4000V/m 与100μT 的标准要求。

3.2.12 线路交叉跨越处电磁环境影响分析

根据现场调查,本项目线路交叉跨越处均无电磁环境保护目标分布,因此线路交叉跨越处电磁环境执行架空线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所电磁环境限值 10kV/m 标准。

根据设计资料,新建 220kV 宏水牵 I、II 线两条 220kV 单回架空线路(垂直排列)未与已建 110kV 及以上等级线路交叉跨越,因此本次评价不对新建 220kV 宏水牵 I、II 线两条 220kV 单回架空线路(垂直排列)进行交叉跨越电磁环境影响预测分析。

220kV 宏水牵 I 线(三角排列)段与已建 110kV 南中线以及拟建 110kV 大宏线迁改线路交叉跨越; 220kV 宏水牵 II 线(三角排列)与已建 500kV 张竹二线、已建 110kV 南中线以及拟建 110kV 大宏线迁改线路交叉跨越; 110kV 大宏线迁改工程与拟建 220kV 宏水牵 I、II 线交叉跨越, 因此本次评价对上述交叉跨越处分别进行电磁环境影响预测分析。

线路名称	交叉跨越线路	拟建线路工频 电场强度贡献 值(V/m)	已建线路工频 电场强度现状 值(V/m)	拟建线路工频 电场强度预测 值(V/m)	标准限值 (V/m)
220kV 宏水牵 I	110kV 南中线	1663.6	420.4^{\odot}	2084	10000
线 (三角排 列)	拟建 110kV 大宏线 迁改线路	2633.1	/ [®]	2633.1	10000
220kV 宏水牵	500kV 张竹二线	1663.6	1855 [©]	3518.6	10000
II 线(三角排	110kV 南中线	1663.6	420.4^{\odot}	2084	10000
列)	拟建 110kV 大宏线 迁改线路	2633.1	ſ [®]	2633.1	10000
110kV 大宏线	拟建 220kV 宏水牵 I 线	2633.1	/ ®	2633.1	10000
迁改工程	拟建 220kV 宏水牵 II 线	2633.1	/ [®]	2633.1	10000

表 3-25 拟建线路交叉跨越处电磁环境预测一览表

备注:①因拟建 220kV 宏水牵 I、II 线(三角排列)与已建 110kV 南中线交叉跨越处不具备监测条件,本次评价从最不利角度选取已建 110kV 南中线导线对地高度相比交叉跨越处导线对地高度更低处现状监测值来进行叠加预测;

②因拟建 220kV 宏水牵 II 线(三角排列)与已建 500kV 张竹二线交叉跨越处不具备监测条件,本次评价从最不利角度选取已建 500kV 张竹二线导线对地高度相比交叉跨越处导线对地高度更低处现状监测值来进行叠加预测:

③拟建 220kV 宏水牵 I、II 线与拟建 110kV 大宏线迁改线路交叉跨越处电磁环境影响分析不考虑现状值,从最不利角度选取拟建 220kV 宏水牵 I、II 线(三角排列)与拟建 110kV 大宏线迁改线路沿线 1.5m 工频电场强度最大预测值进行叠加预测。

根据以上预测结果,本项目建成投运后,线路沿线交叉跨越处工频电场强度预测值在 (2084~3518.6) V/m 之间,满足架空线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所电磁环境限值 10kV/m 标准要求。

3.3 新建电缆线路电磁环境影响预测分析

3.3.1 类比分析依据

根据《浅述多回路不同电压电缆线路电磁环境影响评价方法》(何清怀,四川省首届环境影响评价学术研讨会论文集[C],2009年,[A])(见附件8)研究结论:

- ①电缆线路产生的工频电场强度与电压等级、回路数无直接关系,原因是电缆线路的工频电场可以通过电缆外层的金属屏蔽层和铠装层进行有效屏蔽;
- ②电缆线路产生的工频磁感应强度较小,且随电缆通道中心线距离的增加总趋势减少,最大值基本位于电缆通道中心线上,但均低于标准限值:
- ③同电压不同回路数共沟电缆线路产生的工频磁感应强度随回路数增加略有增大,但增加幅度不大。

3.3.2 类比条件分析

由于受既有线路敷设方式的限制,本项目新建220kV 电缆线路电磁影响很难找到完全符合 类比条件的运行工程进行监测分析。为此,结合以上理论分析,本评价选取了运行且通过原厦门市环境保护局竣工环境保护验收的湖边220kV 变电站配套220kV 线路作为类比对象。对比情况见表3-26。

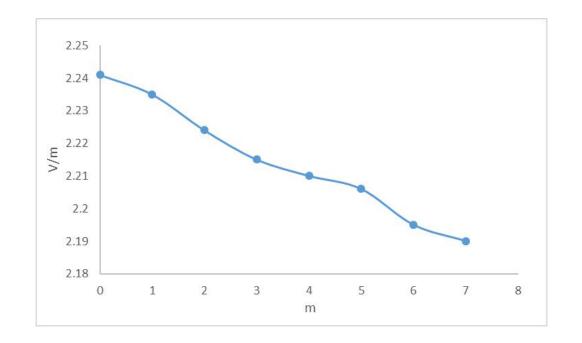
表 3-26 本项目新建 220kV 电缆线路与湖边 220kV 变电站配套 220kV 线路工程比较表

序号	线路名称	新建 220kV (本項	/ 电缆线路 页目)	湖边 220kV 变电站配套 220kV 线路工程 (类比线路)	优劣性
1	电压等级	220	kV	220kV	一致
2	回路数	2×220kV	1×220kV	5×220kV	本项目优
3	电缆通道	电缆	排管	电缆隧道	类似
4	电缆埋深	约 1.5~	~7.8m	约 1.5m	本项目优
5	外环境		E热带湿润季风气 目对湿度 80%	厦门市区,测试环境湿度 69%~73.4%	类似

由上表可知:本项目新建 220kV 电缆线路与类比线路在电压等级方面一致;在电缆通道、电缆埋深以及外环境方面类似;在电缆埋深方面,本项目线路电缆埋深更深;在电缆回路数方面,类比线路电缆回路数更多,因此,理论上类比线路运行期产生的电磁环境影响更大,因

此,本项目新建 220kV 电缆线路与湖边 220kV 变电站配套 220kV 线路工程电缆线路具有一定的可比性。

3.3.3 类比线路监测方法


类比线路监测按照《工频电场测量》(GB/T12720-1991)、《交流输变电工程电磁环境测量方法(试行)》(HJ681-2013)、《电磁辐射监测仪器和方法》(HJ/T10.2-1996)、《高压交流架空送电线路、变电站工频电场和磁场测量方法》(DL/T988-2005)中的规定。监测项目为距地面高度 1.5m 处的工频电场强度、工频磁场强度。监测单位为具有监测资质和计量资质的福建省电力环境监测研究中心站。监测仪器(EFA-300、PMM9010、PMM RA-01HV)均在校验有效期范围内。

3.3.4 类比线路电磁监测结果

类比线路湖边 220kV 变电站配套 220kV 线路的工频电磁场监测结果见表 3-27。

点位 距离(m) 工频电场强度(V/m) 工频磁感应强度(µT) 0 2.241 2.025 东湖 220kV 电缆、 1 2.235 1.814 安湖 220kV II 路电 2 2.224 1.480 缆、湖半 220kV I 路 3 电缆、220kV II 路电 2.215 1.109 缆、220kV III 路电 4 0.7985 2.210 缆隧道 (金钟路段) 5 2.206 0.5778 中心正上方往南,电 6 2.195 0.4602 缆埋深 1.5m 7 2.190 0.3556

表 3-27 湖边 220kV 变电站配套 220kV 线路工频电磁场监测结果

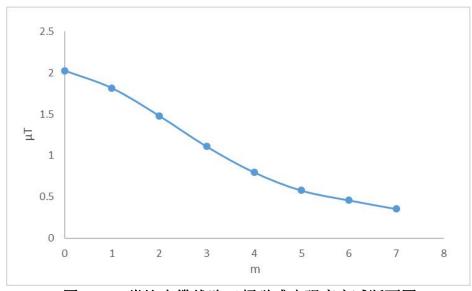


图 3-24 类比电缆线路工频电场强度衰减断面图

图 3-25 类比电缆线路工频磁感应强度衰减断面图

根据表 3-27 和图 3-24 分析可知,类比线路监测点位距线路中心(0~7m)范围内工频电场强度在(2.190~2.241)V/m 之间,电缆线路对工频电场的贡献较小,且工频电场强度随着距电缆通道中心线距离的增加减小,最大值位于距电缆通道中心线上,远低于 4000V/m 的标准限值要求。

由表 3-27 和图 3-25 可知,类比线路监测点位距线路中心(0~7m)范围内工频磁感应强度在(0.3556~2.025)μT 之间,电缆线路对工频磁场的贡献较小,且工频磁感应强度随距电缆通道中心线距离的增加而减小,最大值位于电缆通道中心线上,且远低于 100uT 的标准限值要求。

3.2.5 类比分析结论

根据类比线路监测结果以及衰减规律分析可知,本期电缆线路沿线工频电场强度及工频磁感应强度贡献值较低。

拟建电缆线路沿线受已建500kV 张竹二线、宏墙220kV 变电站及110kV 南中线等线路影响,虽线路沿线现状电磁环境较背景值偏高,但通过类比,电缆线路工频电场强度及工频磁感应强度贡献值较低,类比贡献值叠加现状值后,线路沿线工频电场强度在(15~1858)V/m 之间(类比叠加值进位取整),工频磁感应强度在(2.14~3.92)μT 之间(类比叠加值保留两位小数),均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及100μT 的公众曝露控制限值。

综合以上分析,本项目电缆线路建成后,电缆线路评价范围内工频电场强度及工频磁感应强度均可低于《电磁环境控制限值》(GB8702-2014)中公众曝露控制限值4000V/m及100μT。

4 电磁防护措施

为尽可能减小本项目输电线路对周边电磁环境的影响,本评价提出以下措施:

- (1)架空线路导线对地距离需满足现有设计高度,并严格按照《110kV~750kV架空输电线路设计规范》(GB50545-2010)和设计高度进行施工;
- (2)本项目新建架空线路与沿线环境保护目标之间的距离不应小于本评价提出的电磁达标距离,即在不考虑风偏的情况下,在现有设计高度前提下,新建 220kV 单回架空线路(三角排列)段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 5m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可);新建 220kV 单回架空线路(导线垂直)并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 6m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可)。新建 110kV 架空线路需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 3m,或与下相导线线下垂直距离至少为 3m(满足二者条件之一即可);
- (3)输电线路穿越非居民区时,在工频电场强度大于 4000V/m 且小于 10kV/m 的耕地、园地等公众容易到达的场所区域内设置警示和防护指示标志。
 - (4) 电缆线路段适当增加埋深;
- (5) 在运行期,应加强环境管理,定期进行环境监测工作,确保项目周边电磁环境小于《电磁环境控制限值》(GB 8702-2014)中的公众曝露控制限值。

5 结论与建议

5.1 结论

5.1.1 电磁环境质量现状

(1) 宏墙220kV 变电站间隔扩建工程

根据监测结果,220kV 宏墙变电站间隔扩建侧工频电场强度监测值为39.21V/m,工频磁感应强度监测值为0.0795μT,低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及100μT 的公众曝露控制限值。

(2) 新建 220kV 宏水牵 I、II 线工程

根据监测结果,拟建 220kV 宏水牵 I、II 线沿线工频电场强度监测值在(1.408~1855)V/m 之间、工频磁感应强度监测值在(0.0168~1.898) μ T 之间,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100 μ T 的公众曝露控制限值。

(3) 110kV 大宏线迁改工程

根据监测结果,原 110kV 大宏线沿线典型监测点位工频电场强度监测值在(106.4~233.6) V/m 之间、工频磁感应强度监测值在(0.2158~0.6161)μT 之间,110kV 大宏线迁改线路沿线典型监测点位工频电场强度监测值为 22.51V/m、工频磁感应强度监测值为 0.1085μT,均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及 100μT 的公众曝露控制限值。

5.1.2 环境影响评价结论

(1) 宏墙 220kV 变电站间隔扩建工程电磁环境影响评价

宏墙 220kV 变电站本期仅扩建 2 个 220kV 电缆出线间隔,扩建工程不新增主变压器,本次间隔扩建工程不会改变站内的主变、主母线等主要电气设备。增加的电气设备对变电站厂界外的工频电场、工频磁场基本上不构成增量影响,扩建工程完成后变电站区域电磁环境水平与变电站前期工程建成后的电磁环境水平相当。

通过景文 220kV 变电站类比监测结果,宏墙 220kV 变电站本期间隔扩建完成后,变电站间隔扩建侧厂界外的电场强度和工频磁感应强度仍满足相应的限值要求。

(2) 新建架空线路电磁环境影响评价

经预测,在新建 220kV 宏水牵 I 线最低导线对地高度为 19m 时;在新建 220kV 宏水牵 II 线最低导线对地高度为 14m 时;新建 110kV 架空线路在下相线导线对地高度为 11m 时,线下地面 1.5m 高处工频电场强度、工频磁感应强度均满足《电磁环境控制限值》(GB 8702-2014)规定的 4000V/m 和 100μT 标准要求,亦满足架空线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所电磁环境限值 10kV/m 标准要求。

(3) 新建电缆线路工程电磁环境影响评价

根据类比线路监测结果以及衰减规律分析可知,本期电缆线路沿线工频电场强度及工频磁感应强度贡献值较低。

拟建电缆线路沿线受已建500kV 张竹二线、宏墙220kV 变电站及110kV 南中线等线路影响,虽线路沿线现状电磁环境较背景值偏高,但通过类比,电缆线路工频电场强度及工频磁感应强度贡献值较低,类比贡献值叠加现状值后,线路沿线工频电场强度在(15~1858)V/m 之间(类比叠加值进位取整),工频磁感应强度在(2.14~3.92)μT 之间(类比叠加值保留两位小数),均分别低于《电磁环境控制限值》(GB 8702-2014)4000V/m 及100μT 的公众曝露控制限值。

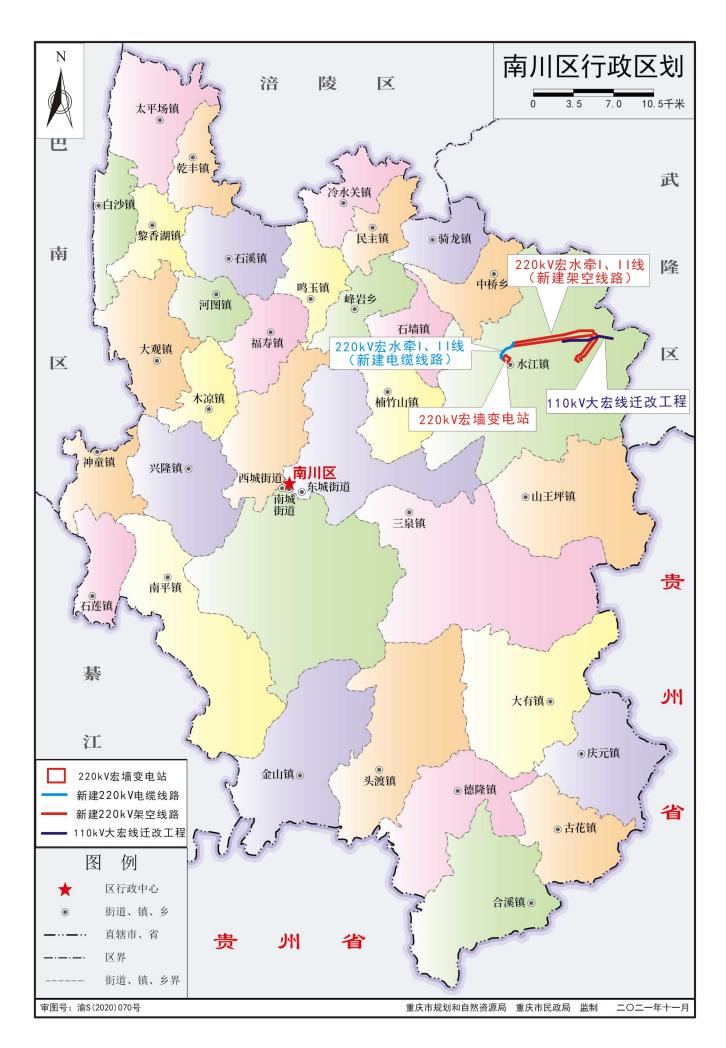
(4) 线路沿线典型电磁环境保护目标预测分析

经预测,本项目建成投运后,线路沿线现有最近环境保护目标的工频电场强度预测值在 (140~1151) V/m 之间、工频磁感应强度预测值在 (1.24~6.03) μT 之间,均小于公众曝露控制限值 4000V/m 与 100μT 的标准要求。线路沿线规划电磁环境保护目标在满足本评提出的达标距离情况下,工频电场强度、工频磁感应强度能满足公众曝露控制限值 4000V/m 与 100μT 的标准要求。

(5) 线路交叉跨越处电磁环境影响分析

根据现场调查,本项目线路交叉跨越处均无电磁环境保护目标分布。经预测,本项目建成投运后,线路沿线交叉跨越处工频电场强度预测值在(2084~3518.6)V/m 之间,满足架空线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所电磁环境限值 10kV/m 标准要求。

5.2 环保措施


为尽可能减小输电线路对周边电磁环境的影响,本评价提出以下措施:

(1) 架空线路导线对地距离需满足现有设计高度,并严格按照《110kV~750kV 架空输电线路设计规范》(GB50545-2010)和设计高度进行施工;

- (2)本项目新建架空线路与沿线环境保护目标之间的距离不应小于本评价提出的电磁达标距离,即在不考虑风偏的情况下,在现有设计高度前提下,新建 220kV 单回架空线路(三角排列)段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 5m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可);新建 220kV 单回架空线路(导线垂直)并行段需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 6m,或与下相导线线下垂直距离至少为 5m(满足二者条件之一即可)。新建 110kV 架空线路需与沿线环境保护目标建筑保持以下距离:与边导线的水平距离至少为 3m,或与下相导线线下垂直距离至少为 3m(满足二者条件之一即可);
- (3)输电线路穿越非居民区时,在工频电场强度大于 4000V/m 且小于 10kV/m 的耕地、园地等公众容易到达的场所区域内设置警示和防护指示标志;
 - (4) 电缆线路段适当增加埋深:
- (5) 在运行期,应加强环境管理,定期进行环境监测工作,确保项目周边电磁环境小于《电磁环境控制限值》(GB 8702-2014)中的公众曝露控制限值。

5.3 建议

在运行期,应加强环境管理和环境监测工作。

附图1 本项目地理位置图